Understanding the origin of CMB constraints on dark energy

H. K. Jassal,1⋆ J. S. Bagla1⋆ and T. Padmanabhan2⋆

1Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019, India
2Inter University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007, India

Accepted 2010 March 8. Received 2010 February 1; in original form 2009 June 4

ABSTRACT
We study the observational constraints of cosmic microwave background (CMB) temperature and polarization anisotropies on models of dark energy, with special focus on models with variation in properties of dark energy with time. We demonstrate that the key constraint from CMB observations arises from the location of acoustic peaks. An additional constraint arises from the limits on Ω_{NR} from the relative amplitudes of acoustic peaks. Further, we show that the distance to the last scattering surface is not how the CMB observations constrain the combination of parameters for models of dark energy. We also use constraints from supernova observations and show that unlike the gold and silver samples, the Supernova Legacy Survey (SNLS) sample prefers a region of parameter space that has a significant overlap with the region preferred by the CMB observations. This is a verification of a conjecture made by us in an earlier work. We discuss combined constraints from Wilkinson Microwave Anisotropy Probe 5-yr and SNLS observations. We find that models with $w \approx -1$ are preferred for models with a constant equation-of-state parameters. In case of models with a time-varying dark energy, we show that constraints on evolution of dark energy density are almost independent of the type of variation assumed for the equation-of-state parameter. This makes it easy to get approximate constraints from CMB observations on arbitrary models of dark energy. Constraints on models with a time-varying dark energy are predominantly due to CMB observations, with supernova constraints playing only a marginal role.

Key words: cosmic background radiation – cosmological parameters.

1 INTRODUCTION
Observational evidence for accelerated expansion in the Universe has been growing in the last two decades (Efstathiou, Sutherland & Maddox 1990; Ostriker & Steinhardt 1995; Bagla, Padmanabhan & Narlikar 1996). Independent confirmation using observations of high-redshift supernovae (SNe) (Garnavich et al. 1998; Perlmutter et al. 1999; Tonry et al. 2003; Barris et al. 2004; Riess et al. 2004; Astier et al. 2005) has made this result more acceptable to the community. Using these observations along with observations of cosmic microwave background (CMB) radiation (Melchiorri et al. 2000; Spergel et al. 2003; Komatsu et al. 2009) and large-scale structure (Percival et al. 2007), we can construct a ‘concordance’ model for cosmology and study variations around it (e.g. see Bridle et al. 2003; Tegmark et al. 2004; Dunkley et al. 2008; Komatsu et al. 2009; for an overview of our current understanding, see Padmanabhan 2005b,d,e).

Observations indicate that the dominant component of energy density – called dark energy – should have an equation-of-state parameter $w \equiv P/\rho < -1/3$ for the universe to undergo accelerated expansion. Indeed, present-day observations require $w \simeq -1$. The cosmological constant is the simplest explanation for accelerated expansion (Weinberg 1989; Carroll, Press & Turner 1992; Sahni & Starobinsky 2000; Ellis 2003; Padmanabhan 2003; Peebles & Ratra 2003; Padmanabhan 2005a; Perivolaropoulos 2006; Copeland, Sami & Tsujikawa 2006) and it is known to be consistent with observations. In order to avoid theoretical problems related to cosmological constant (Weinberg 1989; Carroll et al. 1992), many other scenarios have been investigated: these include quintessence (de la Macorra & Piccinelli 2000; Urena-Lopez & Matos 2002; de Ritis & Marino 2003; Sen & Scherrer 2005; Gorini et al. 2004; Jassal 2004), phantom fields (Caldwell 2002; Onemli & Woodard 2003; Bento, Bertolami & Sen 2002; Dev, Jain & Alcaniz 2003; Sen & Scherrer 2005), Chaplygin gas and its generalizations (Gorini et al. 2001; Bento, Bertolami & Sen 2002; Dev, Jain & Alcaniz 2003; Sen & Scherrer 2005), phantom fields (Caldwell 2002; Onemli & Woodard 2003; Bento, Bertolami & Sen 2002; Dev, Jain & Alcaniz 2003; Sen & Scherrer 2005), and others.

*E-mail: hkJ@hri.res.in (HKJ); jasjeet@hri.res.in (JSB); nabhan@iucaa.ernet.in (TP)
Given that w for dark energy should be smaller than $-1/3$ for the Universe to undergo accelerated expansion, the energy density of this component changes at a much slower rate than that of matter and radiation. (Indeed, $w = -1$ for cosmological constant and in this case the energy density is a constant.) Unless w is a rapidly varying function of redshift and becomes $w \approx 1$ at redshifts $(z \approx 1)$ compared to that of non-relativistic matter. If dark energy evolves in a manner such that its energy density is comparable to, or greater than the matter density in the universe at high redshifts, then the basic structure of the cosmological model needs to be modified. We do not consider such models, instead we confine our attention to constraints on dark energy in realistic models and choose observations which are sensitive to evolution of $w(z)$ at redshifts $z \gtrsim 1$.

SN observations permit a large variation in the equation of state (Alam et al. 2004a,b). It has recently been argued that a cosmological constant with a small curvature can be interpreted as a dynamical dark energy model (Clarkson, Cortés & Bassett 2007; Virey et al. 2005). We have shown that a combination of SN observations with CMB observations and abundance of rich clusters of galaxies provides tight constraints on variation of dark energy (Jassal, Bagla & Padmanabhan 2005; Jassal, Bagla & Padmanabhan 2005a). Of these CMB data provide the most stringent bounds on variation in evolution of dark energy density. In this paper the main motivation is to study how these models fare in the light of current CMB data (Dunkley et al. 2008; Komatsu et al. 2009).

A variety of observations can be used to constrain models of dark energy, e.g. see section II B of Jassal et al. (2005a) for an overview. Observations of high-redshift SNe provided the first direct evidence for accelerated expansion of the universe (Riess et al. 1998; Perlmutter et al. 1999). This, coupled with the ease with which the high-redshift SN data can be compared with cosmological models, has made it the favourite benchmark for comparison with models of dark energy. It is often considered sufficient to compare a model with the SN data even though observers and theorists have pointed out potential problems with the data (Perlmutter & Schmidt 2003; Jain & Ralston 2006) as well as some peculiar implications of the data (Padmanabhan & Choudhury 2003; Choudhury & Padmanabhan 2005; Gupta et al. 2009). Further, it has been shown that other observations such as temperature anisotropies in the CMB fix the distance to the last scattering surface and are a reliable probe of dark energy (Eisenstein & White 2004; Jassal et al. 2005). In this paper, we try to understand the origin of the constraint on models of dark energy from CMB anisotropy observations. We show that the angular scale of acoustic peaks provides the leading constraint on the combination of parameters. An additional constraint comes in through the degeneracy with Ω_{NR}, where a constraint on Ω_{NR} from the relative heights of acoustic peaks translates into an indirect constraint on the equation-of-state parameter w.

In an earlier work, we compared the constraints on models of dark energy from SN and CMB observations and pointed out that models preferred by these observations lie in distinct parts of the parameter space and there is no overlap of regions allowed at 68 per cent confidence level (Jassal et al. 2005a). Even though different observational sets are sensitive to different combinations of cosmological parameters, we do not expect models favoured by one observation to be ruled out by another when such a divergence is not expected. This divergence may point to some shortcomings in the model, or to systematic errors in observations, or even to an incorrect choice of priors. We suggested that this may indicate unresolved systematic errors in one of the observations, with SN observations being more likely to suffer from this problem due to the heterogeneous nature of the data sets available at the time. In Supernova Legacy Survey (SNLS) (Astier et al. 2005), a concerted effort has been made to reduce systematic errors by using only high-quality observations. The systematic uncertainties are reduced by using a single instrument to observe the fields. Using a rolling search technique ensures that sources are not lost and data are of superior quality (for details see Astier et al. 2005). If our claim about gold + silver data were to be true, SNLS data should not be at variance with the Wilkinson Microwave Anisotropy Probe (WMAP) data.1 In this paper we study constraints on dark energy models from high-redshift SN observations from the SNLS survey and also observations of the temperature and polarization anisotropies in the CMB using the WMAP 5-yr (WMAP5) data.

This paper is a revised version of an earlier manuscript which became out of date after WMAP3 and then WMAP5 data were released. In the interim period, the issue of systematics in inhomogeneous data sets has been accepted; therefore we do not emphasize that aspect much in this version. The focus of this paper is twofold: to study constraints on dark energy models in light of the SNLS and WMAP5 data, and, to understand the combination of cosmological parameters that is constrained by the CMB observations.

2 DARK ENERGY

2.1 Cosmological equations

If we assume that each of the constituents of the homogeneous and isotropic universe can be considered to be an ideal fluid, and that the space is flat, the Friedman equations can be written as

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$$ \hspace{1cm} (1)

1 This has been shown by several authors, including ourselves in a much earlier version of this manuscript.
and
\[
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P),
\]
where \(P\) is the pressure and \(\rho = \rho_{\text{SNR}} + \rho_r + \rho_{\text{DE}}\), with the respective terms denoting energy densities for non-relativistic matter, for radiation/nasrelativistic matter and for dark energy. Pressure is zero for the non-relativistic component, whereas radiation and relativistic matter have \(P_r = \rho_r/3\). If the cosmological constant is the source of acceleration, then \(\rho_{\text{DE}} = \text{constant}\) and \(P_{\text{DE}} = -\rho_{\text{DE}}\). Analysis of non-flat cosmologies reveals that allowed range of curvature of the universe \(\Omega_k\) is \(-0.012\) to \(0.009\) at 95 per cent confidence level and a flat universe is a good fit to the current data (Xia et al. 2008).

An obvious generalization is to consider models with a constant equation-of-state parameter \(w\equiv P/\rho = \text{constant}\). One can, in fact, further generalize to models with a varying equation-of-state parameter \(w(z)\). Since a function is equivalent to an infinite set of numbers (defined e.g. by a Taylor–Laurent series coefficients), it is clearly not possible to constrain the form of an arbitrary function \(w(z)\) using a finite number of observations. One possible way of circumventing this issue is to parametrize the function \(w(z)\) by a finite number of parameters and try to constrain these parameters with the available observational data. There have been many attempts to describe varying dark energy with different parametrizations (Wang & Tegmark 2004; Bassett et al. 2004; Jassal et al. 2005; Lee 2005; Li 2004; Hannestad & Mortsell 2004; Jassal et al. 2005a) where the functional form of \(w(z)\) is fixed and the variation is described with a small number of parameters. Observational constraints depend on the specific parametrization chosen, but it should be possible to glean some parametrization independent results from the analysis.

To model varying dark energy we use two parametrizations:

\[
w(z) = w_0 + w'(z = 0)\frac{z}{(1+z)^p}; \quad p = 1, 2.
\]

These are chosen so that, among other things, the high-redshift behaviour is completely different in these two parametrizations Jassal et al. (2005). If \(p = 1\), the asymptotic value \(w(\infty) = w_0 + w'(z = 0)\) and for \(p = 2\), \(w(\infty) = w_0\). For both \(p = 1, 2\), the present value \(w(0) = w_0\). Clearly, we must have \(w(z \gg 1) \approx -1/3\) for the standard cosmological models with a hot big bang to be valid. This restriction is imposed over and above the priors used in this paper.

The allowed range of parameters \(w_0\) and \(w_0' = w'(z = 0)\) is likely to be different for different \(p\). However, the allowed variation at low redshifts in \(\rho_{\text{DE}}\) should be similar in both models as observations actually probe the variation of dark energy density.

2.2 Observational constraints

2.2.1 Supernova data

In this paper, we concentrate on SN and WMAP observations. SN data provide geometric constraints for dark energy evolution. These constraints are obtained by comparing the predicted luminosity distance to the SN with the observed one. The theoretical model and observations are compared for luminosity measured in magnitudes:

\[
m_B(z) = M + 5 \log_{10}(D_L),
\]

where \(M = M - 5 \log_{10}(H_0)\) and \(D_L = H_0 d_L\). \(M\) being the absolute magnitude of the object and \(d_L\) is the luminosity distance

\[
d_L = (1 + z)a(t_0)\theta(z); \quad \theta(z) = c \int \frac{dz}{H(z)}.
\]

where \(z\) is the redshift. This depends on evolution of dark energy through \(H(z)\). For our analysis we use the SNLS data set (Astier et al. 2005) and for reference we also used the combined gold and silver SN data set in Riess et al. (2004) (see also Nesseris & Perivolaropoulos 2006). These data are a collection of SN observations from Tonry et al. (2003), Garnavich et al. (1998) and many other sources with 16 SNe discovered with Hubble Space Telescope (HST) (Riess et al. 2004). The parameter space for comparison of models with SN observations is small and we do a dense sampling of the parameter space.

2.2.2 CMB data

CMB anisotropies constrain dark energy in two ways, through the distance to the last scattering surface and through the integrated Sachs–Wolfe (ISW) effect (Peiris & Spergel 2000). Given that the physics of recombination and evolution of perturbations does not change if \(w(z)\) remains within some safe limits, any change in the location of peaks will be due to dark energy (Eisenstein & White 2004). For models with a variable \(w(z)\), the constraint is essentially on an effective value \(w_{\text{eff}}\) (Jassal et al. 2005a). This constraint can arise either through the angular diameter distance or the angular size of the acoustic horizon seen reflected in the scale corresponding to the acoustic peaks in the CMB angular power spectrum.

Fig. 1 shows contours of equal angular diameter distance to the last scattering surface in the \(\Omega_{\text{SNR}}-w\) plane. We assumed a fixed value of \(H_0\) and \(\Omega_k\) for this plot. If the distance to the last scattering surface is the key constraint on models of dark energy, then the likelihood contours should run along the contours of constant distance in this plane.

We may use the angular size of the Hubble radius at the time of decoupling as an approximate proxy for the angular size of the acoustic horizon for the purpose of this discussion. The approximate angular size \(\theta\) of the Hubble radius at the time of decoupling can

![Figure 1. Contours of angular diameter distance. The range plotted is the range allowed by WMAPS data. From the line on to the one at bottom the values correspond to \(d_L = 12000, 13000, 14273, 20000\) and 20 100 Mpc.](image-url)
be written as
\[\theta^{-1} = \frac{H_0/H(z)}{\int_0^z \frac{dy}{|H(y)/H_0|}} \]
\[\simeq \frac{\left[\Omega_{NR} (1 + z) \right]^{-1/2}}{\int_0^z dy / \sqrt{\Omega_{NR} (1 + z)^3 + \theta^{DE}(z)/\theta^{DE}_0}} \]
\[= \frac{\left[\Omega_{NR} (1 + z) \right]^{-1/2}}{\int_0^z dy / \sqrt{\Omega_{NR} (1 + z)^3 + \Omega_{DE} (1 + z)^3 w_{eff}}} \]

(6)

Clearly, the value of the integral will be different if we change \(w_0 \) and \(w(z = 0) \), and there will also be some dependence on the parameterized form. If the location of peaks in the angular power spectrum of the CMB provide the main constraint, this can only constrain \(w_{\text{eff}} \) and not all of \(w_0 \), \(w'(z = 0) \) and \(p \). Therefore if the present value \(w_0 < w_{\text{eff}} \), then it is essential that \(w'(z = 0) > 0 \), and similarly if \(w_0 > w_{\text{eff}} \), then \(w'(z = 0) < 0 \) is needed to ensure that the integrals match. Specifically, the combination of \(w_0 \), \(w'(z = 0) \) and \(p \) should give \(w_{\text{eff}} \) within the allowed range.

Fig. 2 shows contours of constant \(\theta \) in the \(\Omega_{NR} - w \) plane. If the angular scale of acoustic peaks is the key constraint arising from CMB observations for models of dark energy, then we should see two features in the likelihood contours.

(i) Likelihood contours for models with a constant equation-of-state parameter \(w \) in the \(\Omega_{NR} - w \) plane should run along contours of constant \(\theta \), as shown in Fig. 2.

(ii) Likelihood contours for different models of varying dark energy should coincide in the \(\Omega_{NR} - w_{\text{eff}} \) plane. These should also coincide with the contours for models with a constant \(w \) in the \(\Omega_{NR} - w \) plane.

The origin of the CMB constraints on dark energy is not in the raw distance to the surface of last scattering but in the combination of parameters that determines the location of peaks in the angular power spectrum. It is important to note that the distance to the surface of last scattering is a derived quantity. The CMB observations constrain only one number, the effective equation of state. There is no ambiguity except for models with early dark energy (Linder & Robbers 2008). In these models, the growth of perturbations is slower than models in which dark energy comes into play at late times (Benabed & Bernardeau 2001; Doran & Robbers 2006).

In our analysis, we use the angular power spectrum of the CMB temperature anisotropies (Hu & Dodelson 2002; White & Cohn 2002; Subramanian 2004) and the extended distant SN data set from the SNLS, the ESSENCE Survey (Wood-Vasey et al. 2004; Mota & van de Bruck 2004; Gordon & Hu 2004; Gordon & Wands 2005; Nunes & Mota 2006; Sergijenko et al. 2008; Hu 2005; Mainini 2009, 2008) as well as without.

(ii) Models with a varying equation-of-state parameter \(w \), with variation given by equation (3) \((p = 1) \). Perturbations in dark energy were not taken into account in this case.

(iii) Models with a varying equation-of-state parameter \(w \), with variation given by equation (3) \((p = 2) \). Perturbations in dark energy were not taken into account in this case too.

We analyse the allowed range of cosmological parameters for these cosmologies and consider the probability with which the Lambda cold dark matter (LCDM) model is allowed within these three classes of models. In light of the significant disagreement between the allowed range of parameters from the high-redshift SN data from the gold + silver set and the CMB anisotropies from WMAP observations (Jassal et al. 2005a; Nesseris & Perivolaropoulos 2006), we also check the degree of overlap between the parameter space allowed by the SN and the CMB observations, respectively. The newly released ‘Union’ data set includes data from the SNLS, the ESSENCE Survey (Wood-Vasey et al. 2007) and the extended distant SN data set from HST along with the older data sets (Kowalski et al. 2008). The combined data favour variation in dark energy equation of state.

3 RESULTS

In this section we will describe the results of this paper. We studied models in three classes.

(ii) Models with a varying equation-of-state parameter \(w \), with variation given by equation (3) \((p = 1) \). Perturbations in dark energy were not taken into account in this case.

(iii) Models with a varying equation-of-state parameter \(w \), with variation given by equation (3) \((p = 2) \). Perturbations in dark energy were not taken into account in this case too.

We begin with a very brief review of constraints on parameters in the case where a cosmological constant is the source of accelerating expansion of the universe. We used priors given in Table 1, except

\[http://www.cmbfast.org \]
that the equation-of-state parameter is fixed to \(w = -1 \). Constraints on cosmological parameters are listed in Table 2. We would like to note that our results match those obtained by other authors (Dunkley et al. 2008; Komatsu et al. 2009). Fig. 3 shows contours of likelihood for some pairs of parameters as an example. We have shown contours in the \(n - \Omega_{\text{NR}} h^2 \), \(n - \Omega_B h^2 \) and \(n - \tau \) planes. There is a strong correlation between \(n - \Omega_B h^2 \). These likelihood contours have also been shown as a reference for equivalent plots for models with \(w \neq -1 \), and help in checking the effect of the additional dark energy parameters on allowed range of other parameters.

3.2 Constant \(w \)

We first evaluate the nature of the CMB constraint on models of dark energy. Fig. 4 shows likelihood contours from WMAP5 observations in the \(\Omega_{\text{NR}} - w \) plane for constant \(w \) models. We find that the orientation of these contours is roughly along contours of constant \(\theta \). To illustrate this, we have overlaid contours from Figs 1 and 2 in Fig. 4. On the other hand, there is no similarity between the likelihood and contours of distance to the last scattering surface. Thus we may conclude that the dominant constraint provided by the CMB observations arises from the location of peaks in the angular power spectrum. The reason for this is that the angular diameter distance to the last scattering surface is a derived quantity, whereas the location of peaks in the angular power spectrum of temperature anisotropies is a direct observable.

We use priors given in Table 1 for models with a constant equation-of-state parameter, with the obvious constraint that \(w'(z = 0) = 0 \). For SN observations, we used wider priors for \(w \) and \(\Omega_{\text{NR}} \) in order to illustrate the differences between the two data sets studied here. We begin with a brief summary of results for the gold + silver data set. The best-fitting model in this case is \(w = -1.99 \) and \(\Omega_{\text{NR}} = 0.47 \). The allowed range for \(w \) at 95 per cent confidence limit for large priors is \(-3.73 \leq w \leq -1.25 \). The corresponding range for the density parameter is \(0.28 \leq \Omega_{\text{NR}} \leq 0.57 \). With SNLS data, the best-fitting model is \(w = -1.06 \) and \(\Omega_{\text{NR}} = 0.29 \). The allowed range for \(w \) at 95 per cent confidence limit is \(-2.36 \leq w \leq -0.74 \). The allowed range for the density parameter is \(0.11 \leq \Omega_{\text{NR}} \leq 0.48 \).

We illustrate this in Fig. 5 (top left-hand panel) where we have plotted the regions allowed by the two data sets at 68 per cent confidence levels in the \(\Omega_{\text{NR}} - \Omega_{\Lambda} \) plane. Dashed line shows the region allowed by the gold + silver data set and the solid line is for the SNLS data set. We can deduce the following from this figure.

(i) The region allowed by these two data sets at 68 per cent confidence level has some overlap, thus we may say that the two sets are consistent with each other.

(ii) The overlap is at \(\Omega_{\text{NR}} \geq 0.36 \) and is at margins of what is allowed by other observations.

(iii) The \(\Lambda \)CDM model is ruled out at 68 per cent confidence level by the gold + silver data set.

(iv) The best fit of each set is ruled out by the other data set at this confidence level. Indeed, the best fit of gold + silver data is allowed by the SNLS data with a probability \(P = 12.65 \) per cent while the best fit of the SNLS data set is allowed by the gold + silver data set with \(P = 8.15 \) per cent.

This point is reiterated by the likelihoods of \(w \) and \(\Omega_{\text{NR}} \) for these models in the same panel.

The figure shows the large overlap between the likelihood curves corresponding to SNLS and WMAP data, where the gold + silver data clearly favour higher values of \(\Omega_{\text{NR}} \) and more negative \(w \). The phantom models are still allowed but the SNLS data as well as WMAP data show a preference for models close to a cosmological constant.

For comparison, WMAP allows \(-1.25 \leq w \leq -0.7 \) and \(0.2 \leq \Omega_{\text{NR}} \leq 0.38 \) if dark energy is assumed to be smooth. If we allow for perturbations in dark energy, then the limits on the equation-of-state parameters changes to \(-1.25 \leq w \leq -0.64 \) and \(0.20 \leq \Omega_{\text{NR}} \leq 0.38 \) as shown in the top right-hand panel of Fig. 5.

These figures allow us to conclude the following.

(i) WMAP observations of temperature and polarization anisotropies strongly favour models around \(w = -1 \), i.e. the \(\Lambda \)CDM model. As a result, WMAP and gold + silver data sets have a small region of overlap as the latter does not favour models around \(w = -1 \). It is this disagreement that had led us to suggest that the SN data set could be plagued by some systematic effects (Jassal et al. 2005a), particularly as it contains SNe from a number of different sources. In that paper, we had used WMAP first-year data.

(ii) WMAP and SNLS data sets have a region of overlap within 68 per cent confidence levels.

(iii) There is no significant change in the likelihood contours for other cosmological parameters as we go from the cosmological constant model to dark energy with a constant equation-of-state parameter (not constrained to \(w = -1 \)), or when we go from a smooth dark energy to the model where dark energy is allowed to cluster.

Thus we can say that SNLS and WMAP data are in (much) better agreement as compared to the gold + silver and WMAP data sets.

3.3 Varying \(w(z) \)

It has been claimed that observations, in particular observations of high-redshift SNe (the gold and gold + silver data sets) favour evolution of dark energy (Alam et al. 2004a,b; Padmanabhan & Choudhury 2003; Jonsson et al. 2004; Jimenez 2003; Amendola & Quercellini 2003; Jimenez et al. 2003; Bassett 2005; Bassett et al. 2004; Corasaniti et al. 2004; Daly & Djorgovski 2005; Gong 2005; Choudhury & Padmanabhan 2005; Wang 2005; Wang et al. 2004).

Table 1. The priors used in this paper. Apart from the range of parameters listed in the table, we assumed that the universe is flat. We assumed that the primordial power spectrum had a constant index. Further, we ignored the effect of tensor perturbations. The range of values for \(w_0 \) and \(w'(z = 0) \) is as given, but with the constraint that \(w(z = 1000) \leq -1/3 \). Any combination of \(w_0 \) and \(w'(z = 0) \) that did not satisfy this constraint was not considered. Values given in parenthesis were used for analysing constraints from high-redshift supernovae in Section 3.1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower limit</th>
<th>Upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Omega_B)</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>(\Omega_{\text{NR}})</td>
<td>0.1</td>
<td>0.5(0.7)</td>
</tr>
<tr>
<td>(h)</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>(\tau)</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>(n)</td>
<td>0.86</td>
<td>1.10</td>
</tr>
<tr>
<td>(w_0)</td>
<td>([-2.0(-4.0))</td>
<td>(-0.4)</td>
</tr>
<tr>
<td>(w'(z = 0))</td>
<td>([-5.0)</td>
<td>(5.0)</td>
</tr>
</tbody>
</table>
Table 2. Range of parameters allowed within 95 per cent confidence limit from SNLS, WMAP1, WMAP3 and SNLS + WMAP3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ΛCDM</th>
<th>$w = \text{constant}$</th>
<th>$w = \text{constant}$</th>
<th>$p = 1$</th>
<th>$p = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>with perturbations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>-1.92 to -0.74</td>
<td>-1.92 to -0.74</td>
<td>-1.89 to -0.61</td>
<td>-1.9 to -0.59</td>
<td>SNLS</td>
</tr>
<tr>
<td></td>
<td>-1.39 to -0.58</td>
<td>-1.63 to -0.66</td>
<td>-1.64 to -0.42</td>
<td>-1.93 to -0.43</td>
<td>WMAP1</td>
</tr>
<tr>
<td></td>
<td>-1.25 to -0.7</td>
<td>-1.25 to -0.64</td>
<td>-1.62 to -0.44</td>
<td>-1.62 to -0.43</td>
<td>WMAP5</td>
</tr>
<tr>
<td></td>
<td>-1.47 to -0.83</td>
<td>-1.57 to -0.88</td>
<td>-1.46 to -0.81</td>
<td>-1.74 to -0.77</td>
<td>SNLS + WMAP1</td>
</tr>
<tr>
<td></td>
<td>-1.1 to -0.9</td>
<td>-1.1 to -0.9</td>
<td>-1.3 to -0.8</td>
<td>-1.42 to -0.66</td>
<td>SNLS + WMAP5</td>
</tr>
<tr>
<td>$w'(z = 0)$</td>
<td>-4.82 to 3.3</td>
<td>-4.79 to 4.23</td>
<td>SNLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3.09 to 1.32</td>
<td>-2.5 to 4.87</td>
<td>WMAP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.8 to 1.2</td>
<td>-3.3 to 2.7</td>
<td>WMAP5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.99 to 1.04</td>
<td>-2.22 to 7.9</td>
<td>SNLS + WMAP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.25 to 0.91</td>
<td>-2.6 to 2.7</td>
<td>SNLS + WMAP5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ω_{NR}</td>
<td>0.22 to 0.31</td>
<td>0.11 to 0.47</td>
<td>0.11 to 0.48</td>
<td>0.11 to 0.48</td>
<td>SNLS</td>
</tr>
<tr>
<td></td>
<td>0.20 to 0.45</td>
<td>0.16 to 0.43</td>
<td>0.20 to 0.47</td>
<td>0.17 to 0.45</td>
<td>WMAP1</td>
</tr>
<tr>
<td></td>
<td>0.19 to 0.33</td>
<td>0.19 to 0.39</td>
<td>0.19 to 0.39</td>
<td>0.19 to 0.38</td>
<td>WMAP3</td>
</tr>
<tr>
<td></td>
<td>0.21 to 0.34</td>
<td>0.2 to 0.38</td>
<td>0.2 to 0.38</td>
<td>0.2 to 0.38</td>
<td>WMAP5</td>
</tr>
<tr>
<td></td>
<td>0.22 to 0.31</td>
<td>0.15 to 0.36</td>
<td>0.18 to 0.41</td>
<td>0.16 to 0.38</td>
<td>SNLS + WMAP1</td>
</tr>
<tr>
<td></td>
<td>0.22 to 0.3</td>
<td>0.22 to 0.3</td>
<td>0.22 to 0.33</td>
<td>0.21 to 0.32</td>
<td>SNLS + WMAP5</td>
</tr>
<tr>
<td>h</td>
<td>0.61 to 0.79</td>
<td>0.61 to 0.78</td>
<td>0.6 to 0.79</td>
<td>0.6 to 0.78</td>
<td>WMAP1</td>
</tr>
<tr>
<td></td>
<td>0.66 to 0.77</td>
<td>0.60 to 0.78</td>
<td>0.60 to 0.78</td>
<td>0.61 to 0.79</td>
<td>WMAP5</td>
</tr>
<tr>
<td></td>
<td>0.69 to 0.77</td>
<td>0.68 to 0.78</td>
<td>0.68 to 0.79</td>
<td>0.67 to 0.77</td>
<td>SNLS + WMAP1</td>
</tr>
<tr>
<td></td>
<td>0.68 to 0.74</td>
<td>0.68 to 0.74</td>
<td>0.68 to 0.74</td>
<td>0.66 to 0.76</td>
<td>SNLS + WMAP5</td>
</tr>
<tr>
<td>$\Omega_{b}h^{2}$</td>
<td>0.02 to 0.027</td>
<td>0.021 to 0.028</td>
<td>0.02 to 0.027</td>
<td>0.02 to 0.027</td>
<td>WMAP1</td>
</tr>
<tr>
<td></td>
<td>0.021 to 0.024</td>
<td>0.021 to 0.024</td>
<td>0.021 to 0.023</td>
<td>0.021 to 0.023</td>
<td>WMAP5</td>
</tr>
<tr>
<td></td>
<td>0.02 to 0.027</td>
<td>0.021 to 0.027</td>
<td>0.021 to 0.027</td>
<td>0.021 to 0.028</td>
<td>SNLS + WMAP1</td>
</tr>
<tr>
<td></td>
<td>0.021 to 0.023</td>
<td>0.021 to 0.024</td>
<td>0.021 to 0.023</td>
<td>0.021 to 0.024</td>
<td>SNLS + WMAP5</td>
</tr>
<tr>
<td>n</td>
<td>0.93 to 1.08</td>
<td>0.93 to 1.1</td>
<td>0.93 to 1.09</td>
<td>0.93 to 1.1</td>
<td>WMAP1</td>
</tr>
<tr>
<td></td>
<td>0.94 to 0.99</td>
<td>0.93 to 0.99</td>
<td>0.93 to 0.99</td>
<td>0.93 to 0.99</td>
<td>WMAP5</td>
</tr>
<tr>
<td></td>
<td>0.93 to 1.09</td>
<td>0.94 to 1.08</td>
<td>0.94 to 1.09</td>
<td>0.93 to 1.09</td>
<td>SNLS + WMAP1</td>
</tr>
<tr>
<td></td>
<td>0.94 to 0.99</td>
<td>0.94 to 0.99</td>
<td>0.93 to 0.99</td>
<td>0.94 to 0.99</td>
<td>SNLS + WMAP5</td>
</tr>
<tr>
<td>τ</td>
<td>0.002 to 0.33</td>
<td>0.011 to 0.39</td>
<td>0.007 to 0.35</td>
<td>0.13 to 0.4</td>
<td>0.016 to 0.39</td>
</tr>
<tr>
<td></td>
<td>0.054 to 0.12</td>
<td>0.05 to 0.12</td>
<td>0.055 to 0.12</td>
<td>0.054 to 0.12</td>
<td>WMAP5</td>
</tr>
<tr>
<td></td>
<td>0.004 to 0.33</td>
<td>0.008 to 0.34</td>
<td>0.045 to 0.37</td>
<td>0.013 to 0.38</td>
<td>SNLS + WMAP1</td>
</tr>
<tr>
<td></td>
<td>0.054 to 0.12</td>
<td>0.053 to 0.12</td>
<td>0.055 to 0.13</td>
<td>0.052 to 0.12</td>
<td>SNLS + WMAP5</td>
</tr>
</tbody>
</table>

Figure 3. Marginalized likelihood contours for different parameters for ΛCDM model. The regions enclosed by the contours are 68 and 95 per cent confidence limits. The results are consistent with WMAP5 results for ΛCDM model. The left-hand plot shows the allowed range in $n - \Omega_{b}h^{2}$ plane. The next figure shows the correlation between parameters n and $\Omega_{b}h^{2}$. The figure on the right-hand side shows corresponding contours in $n - \tau$ plane.
As such a variation is impossible if acceleration of the universe is caused by the cosmological constant, it is important to test this claim. Note that the term ‘evolution of dark energy’ has been used for evolution of the equation-of-state parameter, as well as for evolution of energy density for the dark energy component. In an earlier study using the gold + silver data set, we had found that SN observations do not favour evolution of the equation-of-state parameter over models with a constant \(w \ll -1 \). But these models are favoured strongly as compared to the cosmological constant model, which was allowed with \(\mathcal{P} = 6.3 \) per cent amongst models with constant \(w \). When combined with WMAP and other constraints, the allowed variation of dark energy is restricted to a narrow range and models around the cosmological constant are favoured (Seljak et al. 2005; Jassal et al. 2005a). We should note that if we combine only the gold + silver (or gold) SN and WMAP data, then results favour evolution of \(\rho_{\text{DE}} \), but adding observations of galaxy clustering removes this inclination.

We studied constraints on models of varying dark energy with the SNLS and WMAP5 data and the results are summarized in Table 2, which gives the ranges of parameters allowed at 95 per cent confidence level. The SN data constrain \(w_0 \) but do not effectively constrain \(w_1 \). On the other hand, CMB data constrain an effective equation of state and hence indirectly provide constraints on \(w(z = 0) \). This is evident from lower panels of Fig. 5, where we have plotted confidence contours in \(\Omega_{\text{NR}} - w \) plane. The CMB contours are significantly narrower than those given by the SN data. We do not find any significant changes in the likelihood contours for other parameters such as \(n \), \(\Omega_{\text{NR}} h^2 \), \(\Omega_b h^2 \) and \(\tau \). For instance the range of

\[w \]
models with the same plane for reference. Fig. 6 shows these contours for the plotting likelihood contours for models with varying equation of state at the last scattering surface. The green (grey) lines are constraints on constant \(w \) WMAP data. The green (grey) lines are constraints on constant \(w - \Omega_{\text{NR}} \) (without perturbations). These clearly show that the CMB data constrain effective equation of state at the last scattering surface.

\[\Omega_{\text{NR}} h^2 \] is given by 0.21–0.33 is valid for all the models considered here. This is illustrated in Table 2.

Given that CMB observations constrain only one number, we expect that the constraint on models with varying \(w(z) \) should constrain only \(w_{\text{eff}} \) as defined in equation (6). We confirm this by plotting likelihood contours for models with varying \(w(z) \) on the \(\Omega_{\text{NR}} - w_{\text{eff}} \) plane. We also plot contours for constant \(w \) models on the same plane for reference. Fig. 6 shows these contours for the models with \(p = 1 \) and 2. We find very strong coincidence in the contours for models with variable \(w(z) \) when plotted with \(w_{\text{eff}} \) with the contours for models with constant \(w \), thereby confirming our conjecture. This also provides an easy approach to constraining models with variable \(w(z) \) without detailed calculations, all that one needs is to check whether \(w_{\text{eff}} \) is in the range allowed by CMB observations for \(w \) in the constant \(w \) model.

We return to the issue of variation of dark energy density allowed by observations. A pictorial representation of results is given in Fig. 7, where we have plotted \(\rho_{\text{DE}}(z)/\rho_{\text{DE}}(z = 0) \) as a function of redshift. Different panels show the evolution of this quantity as allowed by the SNLS data set, WMAP5 observations of temperature and polarization anisotropies in the CMB and combined constraints from WMAP5 + SNLS. These are plotted for constant \(w \) (with and without dark energy perturbations), and for variable \(w \) with \(p = 1 \) and 2. Dark energy was assumed to be homogeneous in all cases except for the second row that corresponds to constant \(w \) models with perturbations in dark energy. We can conclude the following.

(i) SN observations are a tight constraint for models with constant \(w \), but these are not as strong as CMB constraints.

(ii) SNLS + WMAP5 data offer tighter constraints than either data set and the cosmological constant is allowed with a high probability. This follows from the complementary nature of the two constraints as seen from the orientation of the likelihood contours (e.g. see Fig. 5).

(iii) SN observations do not constrain evolution of dark energy density in models with a variable \(w \). Very large variation in dark energy density is allowed by these observations.

(iv) WMAP5 observations are, in contrast, a much tighter constraint and do not allow significant variation in dark energy. Indeed, the variation in dark energy density allowed by WMAP5 observations for models with variable \(w \) is not significantly larger than that allowed for constant \(w \) models.

(v) We demonstrate that the constraints on dark energy parameters for varying \(w \) models are the same as the constraints on constant \(w \) models if we consider \(w_{\text{eff}} \) for varying dark energy models.

(vi) SNLS + WMAP constraints are essentially dominated by the WMAP data and follow the same pattern. SNLS observations add to the overall constraint by limiting the range of values allowed for \(w_0 \).

We would like to add a note of caution that the analysis for varying \(w \) models does not take perturbations in dark energy into account. However, these are more important for \(w \gg -1 \) or models with rapidly varying \(w \) (Bean & Doré 2004; Caldwell et al. 1998; Weller & Lewis 2003; Hannestad 2005) and such models are not allowed by observational constraints.

4 DISCUSSION

In this paper we studied the SNLS data set and compared the constraints obtained with constraints from WMAP5 data on temperature anisotropies in the CMB. We find that the parameter values favoured by the two data sets have significant overlap and the two sets can be combined to put tight constraints on models of dark energy. In an earlier work we had noted that the gold + silver data set does not agree with WMAP observations in that these favour distinct parts of the parameter space (Jassal et al. 2005a). Constraints from WMAP and structure formation favour similar models, but ones distinct from those favoured by gold + silver SN observations. This indicates some degree of inconsistency between the SN and other observations and it led us to suggest that the gold + silver data set may be affected by as yet unknown systematic errors (Jassal et al. 2005a). One reason for doubting the SN data is the heterogeneity of sources from which the particular data set was collected (Riess et al. 2004). SNLS (Astier et al. 2005) is a homogeneous data set and should not suffer from such problems and indeed we find that there is no inconsistency between SNLS and WMAP observations.

This highlights the usefulness of CMB observations for constraining models of dark energy (Eisenstein & White 2004; Jassal et al. 2005). We believe that CMB observations should be used for testing any model of dark energy as SN observations do not constrain models with varying \(w \) effectively.3 Thus one should use

3 The main constraint on varying \(w \) models is from the CMB data.
Figure 7. The allowed range in variation of dark energy density as a function of redshift. The top row is for homogeneous dark energy model, the second row is for perturbed dark energy, the third row is for varying w with $p = 1$, and, the last row is for varying w with $p = 2$. The white region is the allowed range at 63 per cent confidence level, the hatched region is the one disallowed range of dark energy density at 95 per cent confidence level and the solid (blue) region is the one ruled out at 99 per cent confidence level. In all the rows, the leftmost plot shows range allowed by SNLS data, the middle one with WMAP5 data and the right-hand one shows the range allowed by combined data.
CMB observations as well and not rely only on SN observations for constraining such models.

We would like to add a note of caution against combining the SNLS data with other data sets of high-redshift SNe in light of the very different nature of these data sets. Indeed, one should use homogeneous data sets like the SNLS in isolation to avoid the problems mentioned above.

In terms of models, we find that the cosmological constant is favoured by individual observations (SNLS and WMAP) as well as in the combined data set with very high probability. Table 2 gives allowed values of all cosmological parameters at 95 per cent confidence level by SNLS, WMAP as well as the combined data set. For the cases where a similar analysis has been done by others, our results are consistent with other findings (Bridle et al. 2003; Spergel et al. 2003; Maccio et al. 2004; Linder & Jenkins 2003; Pogosyan, Bond & Coblin 2003; Tegmark et al. 2004; Wang & Tegmark 2004; Giovi, Baccigalupi & Perrotta 2005; Hamann 2004; Huterer & Cooray 2005; Lee 2005; Lee & Ng 2005; Mainini, Colombino & Bonometto 2005; Rapetti, Allen & Weller 2005; Pogosian 2005; Nesseris & Perivolaropoulos 2006; Seljak et al. 2005; Shen et al. 2005; Feng, Wang & Zhang 2005; Xia et al. 2006ab; Amendola, Campos & Rosenfeld 2007; Calvo & Maroto 2006; Carneiro et al. 2006; Dantas et al. 2007; Elizalde et al. 2008; Mota et al. 2007).

We have discussed the origin of the constraint on dark energy models from CMB observations at length. We may conclude the following from the analysis presented here.

(i) Location of acoustic peaks in the angular power spectrum of CMB anisotropies is the main source of constraints.

(ii) CMB observations only constrain $w_{	ext{eff}}$, an effective value of the equation-of-state parameter defined in equation (6). This can be used to translate constraints on models with constant w to models where dark energy properties vary with time.

(iii) We have discussed models with $\Omega_0 = 1$ in this paper. In case this constraint is relaxed, then the well-known degeneracy between w and Ω_0 loosens the constraints. However, it is well known that the SN and CMB data are complementary and can be combined to provide fairly tight constraints even in this case (Perlmutter, Turner & White 1999; Huterer & Turner 2001). We do not expect variations in curvature to modify our conclusions about w_{eff} being the only dark energy related quantity constrained by CMB observations.

(iv) ISW effect due to perturbations in dark energy can, in principle, lead to variations in the CMB radiation angular power spectrum at small l. Our analysis of models with variable w without perturbations does not take this into account. Various analyses have shown that ISW does not contribute significantly to constraining cosmological parameters from CMB data (see e.g. Xia et al. 2009). The main reason for this is that ISW affects power at small l, and due to large cosmic variance these modes do not contribute much to the overall likelihood.

ACKNOWLEDGMENTS

Numerical work for this paper was carried out at cluster computing facility in the Harish-Chandra Research Institute (http://cluster. hri.res.in). This research has made use of NASA’s Astrophysics Data System. HKJ thanks the Department of Science and Technology, India for financial assistance through project number SR/WOS-A/PS-11/2006.

REFERENCES

Alcaniz J. S., 2006, Brazilian J. Phys., 36, 1109
Amendola L., Quercellini C., 2003, Phys. Rev. D, 68, 023514
Armendariz-Picon C., Mukhanov V., Steinhardt P. J., 2001, Phys. Rev. D, 63, 103510
Benabed K., Bernardeau F., 2001, Phys. Rev. D, 64, 083501
Das S., Banerjee N., Dadhich N., 2003, Classical Quantum Gravity, 23, 4159
de la Macorra A., Piccinelli G., 2000, Phys. Rev. D, 61, 123503
H. K. Jassal, J. S. Bagla and T. Padmanabhan

Weinberg S., 1989, Rev. Modern Phys., 61, 1
White M., Cohn J. D., preprint (astro-ph/0203120)
Xia J., Zhao G., Feng B., Li H., Zhang X., 2006a, Phys. Rev. D, 73, 063521

This paper has been typeset from a LaTeX file prepared by the author.