The Search for Dark Matter

Physicists are moving in droves to this field, as the subject has become the big physics problem after the discovery of the Higgs boson, ET's Hari Pulakkat writes.

At school, we have all been told that all matter is made of atoms. This is wrong.

At the end of the 19th Century, the phenomenon of radioactivity gave the first hint to physicists that there was something out there in the sub-atomric realm, something unusual and rich that could one day be exciting and useful.

Investigations of radioactivity led to the discovery of the atom and a world of immense possibilities. Where will dark matter lead us? There is a tremendous amount of matter in the universe. Our own galaxy contains half a trillion stars, and there are 100 billion such galaxies in the universe, and more dust and gas than the stars. All of this together forms just 4% of the universe. Dark matter constitutes 23%, and the rest is another mysterious entity called dark energy. When you consider matter alone, the visible stuff only forms 30%, but it is enough to make such a rich and sophisticated world that includes us.

At the end of the 19th Century, the phenomenon of radioactivity gave the first hint to physicists that there was something out there in the sub-atomric realm.