Is a Deep One Cell Meridional Circulation Essential for Flux Transport Solar Dynamo?

Gopal Hazra, Bidya Binay Karak and Arnab Rai Choudhuri

Department of Physics
Indian Institute of Science, Bangalore

Nov 10, 2014
Importance of Meridional circulation

Solar magnetic field generation is a periodic process.

- Considering differential rotation (Ω) of sun and Babcock-Leighton (α) mechanism regions are coupled by diffusion.

 In Northern Hemisphere:
 - $\alpha \frac{\partial \Omega}{\partial r} > 0 \Rightarrow$ Poleward Propagation.
 - $\alpha \frac{\partial \Omega}{\partial r} < 0 \Rightarrow$ Equatorward Propagation.

This is well known Parker–Yoshimura Sign rule. (*Parker*1955; *Yoshimura*1975)

For sun, in northern hemisphere $\alpha \frac{\partial \Omega}{\partial r} > 0 \Rightarrow$ Poleward Propagation \Rightarrow Contradict observation \Rightarrow Dynamo theory in difficulty.
Meridional circulation helps dynamo wave to overcome Parker-yoshimura sign rule & to propagate along equatorward direction.

It advects the poloidal field towards the pole.
Meridional circulation: Observation

- Poleward flow near the surface is well established and its speed ~ 20 m/s. (Hathaway 1996; Haber et al. 2002; Basu & Antia 2000)

- Use mass conservation principle to construct the full profile of the meridional circulation.

- Though there is no observational evidence supporting the return flow of meridional circulation at the base of the convection zone.
 \Rightarrow only uncertainty in the model.

Figure: Streamlines for one cell Meridional circulation used in FTDM
Recent Observational evidences

- Recently Hathaway (2012) tracked supergranules to claim an equatorward reverse flow at a depth of only 70 Mm. ⇒ Shallow meridional circulation.

- Zhao et al. (2013) found a double cell structure using helioseismic inversion method.

- Poleward flows from \((R_\odot - 0.91 R_\odot)\) and from \((0.82 R_\odot \text{–at least } 0.75 R_\odot)\). An equatorward return flow about \(0.09R_\odot\) thick in between.

- Schad et al. (2013) found complex spatial structure of multiple flow cells distributed in depth and latitude.

- Also found evidence of meridional flow reaches down to the base of the convection zone.

Figure: Credit-(Zhao et al. 2013)
Results from global simulations

- Global convection simulation also shows complicated multiple circulation, and sometimes time-varying. (Miesch et al. 2010; Käpylä et al. 2012; Featherstone et al. 2013; Warnecke et al. 2013)

- Red anti-clockwise, blue clockwise

- We can assume meridional circulation as a free parameter and choose various forms to study their effects on the dynamo.

From Miesch et al. (2010)

From Featherstone et al. (2013)
Previous Theoretical Works

- Guerrero & de Gouveia dal Pino (2008) used strong equatorward pumping to get solar like behaviour.

- Bonnano et al. (2006) used latitudinal distribution of cells.
- Solar like behaviour reproduced.

- Jouve & Brun (2007) used radially stacked two cells.
- Poleward propagation.
Shallow meridional circulation

We do calculation using shallow meridional circulation.

Poleward propagation found in accordance with Parker-Yoshimura sign rule. Solar like behaviour is not reproduced.
Two-cell circulation with continuity of flow between the cells also gives poleward propagation. Meridional circulation is poleward at the bottom.

Two-cell circulation with equatorward flow at the bottom gives solar-like butterfly diagram.
Two-cell circulation with continuity of flow between the cells also gives poleward propagation. Meridional circulation is poleward at the bottom.

Two-cell circulation with equatorward flow at the bottom gives solar-like butterfly diagram

But there is a discontinuity of flow.
Radially stacked three cells

If we want equatorward meridional circulation at the bottom with continuity of flow between cells, we need three cells.

Results:

- Solar like behaviour reproduced.
- Period of dynamo depends on the velocity of the lower cell only. \(T \sim v_l^{-0.72} \)

Complicated cells

We have carried out simulation taking multi-cell meridional circulation also.

Blue–Anticlockwise
Red – clockwise

- Solar like behaviour reproduced as long as there is an equatorward flow at the bottom of the convection zone
Conclusions

- An equatorward meridional flow at the bottom of the convection zone is necessary for dynamo wave to propagate towards equatorward direction.

- If there is a return flow at the shallow depth with no flows underneath and if there is poleward flow at the bottom of the convection zone FTDM will not work.

- As long as the equatorward flow is there FTDM works and we get solar like behaviour.

- Period of dynamo is mostly determined by the velocity of the flow at the lower most cell.
Conclusions

- An equatorward meridional flow at the bottom of the convection zone is necessary for dynamo wave to propagate towards equatorward direction.

- If there is a return flow at the shallow depth with no flows underneath and if there is poleward flow at the bottom of the convection zone FTDM will not work.

- As long as the equatorward flow is there FTDM works and we get solar like behaviour.

- Period of dynamo is mostly determined by the velocity of the flow at the lower most cell.

Thank You