Cosmological parameter estimation using Particle Swarm Optimization (PSO)

Jayanti Prasad

in collaboration with Tarun Souradeep

Inter-University Centre for Astronomy & Astrophysics (IUCAA)
Pune, India (411007)

August 11, 2011
CMBR data analysis pipeline

Parameter estimating using PSO

August 11, 2011

Jayanti Prasad (IUCAA-PUNE)
“In theory at least, individual members of the school can profit from the discoveries and previous experience of all other members of the school during the search for food. This advantage can become decisive, outweighing the disadvantages of competition for food items, whenever the resource is unpredictably distributed in patches”

[in reference to fish schooling]

- E. O. Wilson, 1975, Sociobiology: *The new synthesis*
Searching for the global maximum
Parameter estimation

- Search for the maximum likelihood point (ML).
 - Grid based methods - computational cost - exponentially
 - Stochastic methods - computational cost - linearly (MCMC)

- We demonstrate the application of PSO for parameter estimation from WMAP 7 years data.
Particle Swarm Optimization (PSO)

- Equation of Motion:
 \[X_{t+1}^i = X_t^i + V_{t+1}^i \]

- Velocity:
 \[V_{t+1}^i = wV_t^i + c_1 \xi_1(X_t^i - X_{Pbest}^i) + c_2 \xi_2(X_t^i - X_{Gbest}^i) \]

- \(w \): inertia weight
- \(c_1, c_2 \): acceleration coefficients
- \(\xi_1, \xi_2 \): random numbers
- \(X_{Pbest} \): location of Pbest
- \(X_{Gbest} \): location of Gbest

[Kennedy & Eberhart (1995); Wang & Mohanty (2010)]
Implementation

- **Initial conditions:**
 \[
 X^i(t = 1) = X_{min}^i + \xi(X_{max}^i - X_{min}^i) \\
 V^i(t = 1) = \xi V_{max}^i
 \] (3)
 where
 \[
 V_{max}^i = c_v(X_{max}^i - X_{min}^i)
 \] (4)

- **Boundary conditions (reflecting boundary):**
 \[
 V_t^i = -V_t^i \quad \text{and} \quad X_t^i = \begin{cases}
 X_{max}^i, & \text{if } X_t^i > X_{max}^i \\
 X_{min}^i, & \text{if } X_t^i < X_{min}^i
 \end{cases}
 \] (5)

- **Stopping criteria:**
 \[
 |F(X_{Gbest}^{t+1}, t) - F(X_{Gbest}^t, t)| < \epsilon \quad \text{for} \quad t = 1, n_{stop}
 \] (6)
Results

Gbest

Parameter estimating using PSO

Jayanti Prasad (IUCAA-PUNE)
Gbest
Power spectrum
Parameters

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Omega_b h^2$</td>
<td>(0.01, 0.04)</td>
<td>0.02219</td>
<td>0.02227</td>
</tr>
<tr>
<td>$\Omega_c h^2$</td>
<td>(0.01, 0.20)</td>
<td>0.1109</td>
<td>0.1116</td>
</tr>
<tr>
<td>Ω_A</td>
<td>(0.50, 0.75)</td>
<td>0.731</td>
<td>0.729</td>
</tr>
<tr>
<td>n_s</td>
<td>(0.50, 1.50)</td>
<td>0.962</td>
<td>0.966</td>
</tr>
<tr>
<td>$A_s/10^{-9}$</td>
<td>(1.0, 4.0)</td>
<td>2.43</td>
<td>2.42</td>
</tr>
<tr>
<td>τ</td>
<td>(0.01, 0.11)</td>
<td>0.084</td>
<td>0.0865</td>
</tr>
</tbody>
</table>

TABLE II. The first column in the above table shows the PSO fitting parameters and the second, third, fourth and fifth column show the search range, the location of the Gbest, average position of PSO particles and the error (which we have computed by fitting the sampled function) respectively. In the sixth and seventh columns we give the best fit (ML) and average values of parameters derived from WMAP seven years likelihood estimation respectively. In the last column we give difference between our best fit parameters (PSO parameters) and WMAP team’s best fit parameters. From this table it is clear that roughly there is good agreement between the PSO best fit parameters and WMAP team’s best fit parameters from the seven years data.
Summary & conclusions

- Parameter estimation is an important exercise in current cosmological research.
- We have demonstrated that PSO also can be used for parameter estimation from CMBR data.
- Parameters which we have estimated using PSO are consistent with that obtained from other commonly used methods like MCMC.
- Due to simple algorithm and few design parameters, PSO can be easily implemented and parallelized on a cluster system for accelerated search of parameters.
- PSO can be very useful in situations when the dimensionality of the search space is very high and/or there are a large number of local maxima present.
Thank You!
References

Kennedy, J., & Eberhart, R. 1995, IEEE, 1942
Yao, L., & Sethares, W. A. 1994, IEEE Transactions on Signal Processing, 927