Spinor driven inflation

S. Shankaranarayanan
IISER Trivandrum

Work done with D. Gredat (ENS, Paris),
A. Basak and J. Bhat (PRL, Ahmedabad)

Indo-UK meeting © IUCAA 11 August 2011
Theoretical problems of inflation

- Inflation has several problems including:
 - Reheating problem
 - Hierarchy problem
 - Trans-Planckian problem
 - ...

- These problems seem to be related to the fundamental question:
 What is the nature of the field which drives inflation?
Inflationary models

- Usually assumed to be a scalar field with a potential

![Diagram](image-url)

Potential Energy

Vacuum Energy

Inflation

\[V(\phi) \]

\[\varphi \]
Inflationary models

- Is inflaton a fundamental scalar field? Not clear

Effective scalar field of several fields [Nibbelink and Tent, 2001]

How many scalar fields are required?

Higher Ricci scalar curvature terms $R + \alpha R^2$ [Starobinsky, 1980]

Very specific to Ricci scalar; not if Ricci/Riemann tensors are included do not have a well defined initial value problem

Vector field [Golovnev et al '08; Dimopoulos et al '09] leads to directional asymmetry; require infinite of them to restore symmetry; has instabilities
Inflationary models

- Is inflaton a fundamental scalar field?
 Not clear

- Effective scalar field of several fields
 How many scalar fields are required?
 [Nibbelink and Tent, 2001]
Inflationary models

- Is inflaton a fundamental scalar field? Not clear

- Effective scalar field of several fields
 How many scalar fields are required? [Nibbelink and Tent, 2001]

- Higher Ricci scalar curvature terms $R + \alpha R^2$ [Starobinsky, 1980]
 Very specific to Ricci scalar; not if Ricci/Riemann tensors are included
do not have a well defined initial value problem
Inflationary models

- Is inflaton a fundamental scalar field? Not clear

- Effective scalar field of several fields
 How many scalar fields are required?
 [Nibbelink and Tent, 2001]

- Higher Ricci scalar curvature terms $R + \alpha R^2$
 [Starobinsky, 1980]
 Very specific to Ricci scalar; not if Ricci/Riemann tensors are included
 do not have a well defined initial value problem

- Vector field
 [Golovnev et al '08; Dimopoulos et al '09]
 leads to directional asymmetry;
 require infinite of them to restore symmetry; has instabilities
Constraints from current CMB observations

- WMAP-5 data \[\frac{\delta \rho}{\rho} \simeq 5 \times 10^{-5} \] \[k_1 = 0.002 \text{Mpc}^{-1} \]

- \(n_s \simeq 0.96 \)

- \(\frac{dn_s}{d \ln k} \simeq -0.037 \)

- \(-9 < f_{NL} < 111\)

- Physical consequence
 - perturbation theory is valid
 - Broadly consistent with inflationary paradigm

However, ...

Canonical single scalar field inflation predicts no running and tiny \(f_{NL} \).

Need to go beyond and look for other alternatives.
Spinor driven inflation
Basic idea: Free spinors form an highly interacting Bosonic condensate which dominates in early universe.
Basic idea: Free spinors form an highly interacting Bosonic condensate which dominates in early universe.

Can such a condensate form in the early universe?

The transition from the free fermions to a highly interacting Bosons occurs below the critical temperature:

\[T_c \sim \frac{\hbar^2}{k_B} \frac{\rho^{2/3}}{m^{5/3}} \]

\(\rho \) is energy density \(m \) is mass
Basic idea: Free spinors form an highly interacting Bosonic condensate which dominates in early universe.

Can such a condensate form in the early universe?

The transition from the free fermions to a highly interacting Bosons occurs below the critical temperature:

\[T_c \sim \frac{\hbar^2}{k_B} \frac{\rho^{2/3}}{m^{5/3}} \]

\(\rho \) is energy density \(m \) is mass

In the early universe, \(\rho \sim 10^{98}\text{g/m}^3 \sim 10^{74}\text{GeV}^4 \), \(m \sim 10^{15}\text{GeV} \)

\[T_c \sim 10^{17}\text{GeV} > \text{scale of inflation} \]
Basic idea: Free spinors form an highly interacting Bosonic condensate which dominates in early universe.

Can such a condensate form in the early universe?

The transition from the free fermions to a highly interacting Bosons occurs below the critical temperature:

\[T_c \sim \frac{\hbar^2 \rho^{2/3}}{k_B m^{5/3}} \]

\[\rho \text{ is energy density} \quad m \text{ is mass} \]

In the early universe, \(\rho \sim 10^{98} \text{g/m}^3 \sim 10^{74} \text{GeV}^4, m \sim 10^{15} \text{GeV} \)

\[T_c \sim 10^{17} \text{GeV} > \text{scale of inflation} \]

What kind of spinors can form such a condensate?
Elkos

- Elkos \(\equiv \) Eigenspinoren des Ladungskonjugationsoperators
 Eigen spinors of charge conjugation operator.
In 1928, Dirac formulated wave-equation for charged spin 1/2 particles.

essentially Dirac wanted to compute the square root of the Klein-Gordon equation \((\partial^2 + m^2)\phi = 0\); using matrix valued objects \((i\gamma^a \partial_a + m)(i\gamma^a \partial_a - m)\psi = 0\)

What kind of spinors are used in the Dirac equation?

Eigen spinors of parity operator
How does one describe a neutral spin 1/2 particle? **Majorana particle**

Under charge conjugation operator, the usual set of two Majorana spinors have eigenvalue one.

Ahluwalia & Grumiller showed that there also exists anti self-conjugate set

Complete set of four spinor (Elko) span the four-dimensional representation space of spin 1/2 and come to par with Dirac spinors

Elko are the eigen spinors of charge conjugation operator
Dirac spinors (ψ)

Elkos (λ)
<table>
<thead>
<tr>
<th>Dirac spinors (ψ)</th>
<th>Elkos (λ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eigen spinor of parity operator</td>
<td>charge conjugation operator</td>
</tr>
</tbody>
</table>

$$\hat{P}|\psi\rangle = p|\psi\rangle$$

$$\hat{C}|\lambda\rangle = c|\lambda\rangle$$
Elkos

Dirac spinors (ψ)
- Eigen spinor of parity operator
 $$\hat{P}|\psi\rangle = p|\psi\rangle$$
- Form of spinor and conjugate
 $$\psi = \begin{pmatrix} \psi_R \\ \psi_L \end{pmatrix} \quad \psi^\dagger = \gamma^0 \bar{\psi}$$
 8 real, independent functions

Elkos (λ)
- Charge conjugation operator
 $$\hat{C}|\lambda\rangle = c|\lambda\rangle$$
- Form of Elko and conjugate
 $$\lambda = \begin{bmatrix} \sigma_2 \phi_1^* \\ \phi_1 \end{bmatrix} \quad \lambda^\dagger = i \begin{pmatrix} \phi_2^* & \phi_2^* \sigma_2 \end{pmatrix}$$
 8 real, independent functions
Elkos

Dirac spinors (ψ)

- eigen spinor of parity operator
 $$\hat{P}|\psi\rangle = p|\psi\rangle$$

- Form of spinor and conjugate
 $$\psi = \begin{pmatrix} \psi_R \\ \psi_L \end{pmatrix}, \quad \psi^\dagger = \gamma^0 \overline{\psi}$$

 8 real, independent functions

- Satisfy $(CPT)^2 = I$

Elkos (λ)

- charge conjugation operator
 $$\hat{C}|\lambda\rangle = c|\lambda\rangle$$

- Form of Elko and conjugate
 $$\lambda = \begin{bmatrix} \sigma_2 \phi_1^* \\ \phi_1 \end{bmatrix}, \quad \lambda^\dagger = i \begin{pmatrix} \phi_2^\dagger & \phi_2^\dagger \sigma_2 \end{pmatrix}$$

 8 real, independent functions

- Satisfy $(CPT)^2 = -I$
Elkos

Dirac spinors (ψ)
- Eigen spinor of parity operator
 \[\hat{P} | \psi \rangle = p | \psi \rangle \]
- Form of spinor and conjugate
 \[\psi = \begin{pmatrix} \psi_R \\ \psi_L \end{pmatrix}, \quad \psi^\dagger = \gamma^0 \overline{\psi} \]
- 8 real, independent functions
- Satisfy \((CPT)^2 = I\)
- Dirac Lagrangian
 \[\mathcal{L}_{\text{Dirac}} = \overline{\psi} (i\gamma^\mu \partial_\mu - m) \psi \]

Elkos (λ)
- Charge conjugation operator
 \[\hat{C} | \lambda \rangle = c | \lambda \rangle \]
- Form of Elko and conjugate
 \[\lambda = \begin{pmatrix} \sigma_2 \phi_1^* \\ \phi_1 \end{pmatrix}, \quad \lambda^\dagger = i \begin{pmatrix} \phi_2^\dagger & \phi_2^\dagger \sigma_2 \end{pmatrix} \]
- 8 real, independent functions
- Satisfy \((CPT)^2 = -I\)
- Elko Lagrangian
 \[\mathcal{L}_{\text{elko}} = \frac{1}{2} \mathcal{D}_\mu \lambda^\dagger \mathcal{D}^\mu \lambda - m^2 \lambda \lambda^\dagger \]
Standard matter particles satisfy $(CPT)^2 = 1$.
Elkos satisfy $(CPT)^2 = -1$.
Standard matter particles satisfy \((CPT)^2 = 1\).
Elkos satisfy \((CPT)^2 = -1\).

Restricts interactions between Elkos and standard matter particle.
Interactions between Elkos and standard matter particle will always need Elko and its conjugate.
Standard matter particles satisfy \((CPT)^2 = 1\). Elkos satisfy \((CPT)^2 = -1\).

Restricts interactions between Elkos and standard matter particle. Interactions between Elkos and standard matter particle will always need Elko and its conjugate.

Mass dimension of Elkos also restrict the kind of interactions.
Mass dimension and interactions

- Standard matter particles satisfy \((CPT)^2 = 1\).
 Elkos satisfy \((CPT)^2 = -1\).

- Restricts interactions between Elkos and standard matter particle.
 Interactions between Elkos and standard matter particle will always need Elko and its conjugate.

- Mass dimension of Elkos also restrict the kind of interactions.

Unlike Dirac fields, Elkos can ONLY interact with standard matter particles via Higgs and/or gravity.
Consider the following \((3 + 1) - d\) action

\[
S = \int d^4x \sqrt{-g} \left(R + \mathcal{L}_{\text{Elko}} \right)
\]

\[
\uparrow
\]

\[
\frac{1}{2} \left[\frac{1}{2} g^{\mu\nu} (\mathcal{D}_\mu \lambda^\dagger \mathcal{D}_\nu \lambda + \mathcal{D}_\nu \lambda^\dagger \mathcal{D}_\mu \lambda) \right] - V(\lambda^\dagger \lambda)
\]
Consider the following $(3+1)-d$ action

\[S = \int d^4x \sqrt{-g} \left(R + \mathcal{L}_{\text{Elko}} \right) \]

\[\uparrow \]

\[\frac{1}{2} \left[\frac{1}{2} g^{\mu\nu} (\mathcal{D}_\mu \lambda^\dagger \mathcal{D}_\nu \lambda + \mathcal{D}_\nu \lambda^\dagger \mathcal{D}_\mu \lambda) \right] - V(\lambda^\dagger \lambda) \]

FRW line-element:

\[ds^2 = dt^2 - a^2(t) d\tilde{x}^2 = a^2(\eta) \left[d\eta^2 - d\tilde{x}^2 \right] \]

\[\uparrow \quad \uparrow \quad \uparrow \]

cosmic time expanding 3-space conformal time
Effective density and pressure

\[\rho = \frac{1}{2} \frac{(\varphi'(\eta))^2}{a^2(\eta)} + V(\varphi) - \frac{3}{8} \frac{\mathcal{H}^2}{a^2(\eta)} \varphi^2(\eta) \]

\[p = \frac{1}{2} \frac{(\varphi'(\eta))^2}{a^2(\eta)} - V(\varphi) + \frac{1}{8} \frac{\mathcal{H}^2}{a^2(\eta)} \varphi^2(\eta) \]

\[\mathcal{H} = \frac{a'}{a} \]

extra terms
Effective density and pressure

\[\rho = \frac{1}{2} \left(\frac{\varphi'(\eta)}{a^2(\eta)} \right)^2 + V(\varphi) - \frac{3}{8} \frac{\mathcal{H}^2}{a^2(\eta)} \varphi^2(\eta) \]

\[p = \frac{1}{2} \left(\frac{\varphi'(\eta)}{a^2(\eta)} \right)^2 - V(\varphi) + \frac{1}{8} \frac{\mathcal{H}^2}{a^2(\eta)} \varphi^2(\eta) \]

\[\rho + 3p = 2 \left[\frac{(\varphi'(\eta))^2}{a^2(\eta)} - V(\varphi) \right] \quad \Rightarrow \quad \text{Identical to canonical scalar field} \]
FRW background

Boehmer '07 '08, SS '09, Gredat & SS '10

- Effective density and pressure

\[\rho = \frac{1}{2} \left(\varphi'(\eta) \right)^2 + \frac{3}{8} \frac{H^2}{a^2(\eta)} \varphi^2(\eta) \]

\[p = \frac{1}{2} \left(\varphi'(\eta) \right)^2 - \varphi(\varphi) + \frac{1}{8} \frac{H^2}{a^2(\eta)} \varphi^2(\eta) \]

Extra terms

- Acceleration equation is identical to canonical scalar field driven inflation

\[\ddot{a} = -\frac{4\pi}{3M_{Pl}^2} (\rho + 3p) = \frac{8\pi}{3M_{Pl}^2} \left[V(\varphi) - \dot{\varphi}^2 \right] \]

\[M_{Pl} \equiv G^{-1/2} \approx 10^{19}\text{GeV} \]

Impossible to distinguish the two models from the acceleration equation.
Modified Friedman equation

\[
\frac{8\pi}{3M_{Pl}^2} \left[V(\varphi) + \dot{\varphi}^2/2 \right] \left[1 + F \right] = H^2
\]

\[
\ddot{\varphi} + 3H\dot{\varphi} + G(\varphi) + V,\varphi = 0
\]

\[
F = \frac{\varphi^2}{8M_{Pl}^2}
\]

Salient Features:

1. Elko (and its dual) depends on a single scalar function (\(\varphi\))

 Physically, this can be interpreted an Elko-pair (similar to Copper-pair) forming a scalar condensate — spinflaton.

2. Friedman and spinflaton equations receive non-trivial corrections

 Elko modification to the inflaton equations are determined by \(F\)
Slow-roll parameters

Exact de Sitter solution

\[V(\varphi) = 3q^2 M_{Pl}^2 + \frac{q^2}{4} \varphi^2 \]

\[\varphi \propto \exp \left(\pm \frac{qt}{2} \right) \]

\[a \propto \exp(qt) \]

Different from the canonical scalar field

[Boehmer '08]
Slow-roll parameters

- Exact de Sitter solution

\[V(\varphi) = 3q^2 M_{Pl}^2 + \frac{q^2}{4} \varphi^2 \]

\[\varphi \propto \exp\left(\pm \frac{qt}{2} \right) \]

\[a \propto \exp(qt) \]

Different from the canonical scalar field

- First order exact slow-roll parameters are:

\[\varepsilon \equiv -\frac{\dot{H}}{H^2} = \varepsilon_{\text{can}}[1 + \mathcal{F}] - \mathcal{F} \]

\[\delta \equiv -\frac{\ddot{\varphi}}{H \dot{\varphi}} = \delta_{\text{can}} + \mathcal{F}(\varepsilon_{\text{can}} - 1) - \frac{\ln(1 + \mathcal{F})'}{2H} \]

\[\varepsilon_{\text{can}} = 3 \frac{\dot{\varphi}^2/2}{\dot{\varphi}^2/2 + V} \]

\[\delta_{\text{can}} = \varepsilon_{\text{can}} - \frac{\dot{\varepsilon}_{\text{can}}}{2H \varepsilon_{\text{can}}} \]
Slow-roll parameters

- Exact de Sitter solution

\[V(\varphi) = 3q^2 M_{Pl}^2 + \frac{q^2}{4} \varphi^2 \quad \varphi \propto \exp \left(\pm \frac{qt}{2} \right) \quad a \propto \exp(qt) \]

Different from the canonical scalar field

- First order exact slow-roll parameters are:

\[\varepsilon \equiv - \frac{\dot{H}}{H^2} = \varepsilon_{\text{can}} [1 + \mathcal{F}] - \mathcal{F} \quad \varepsilon_{\text{can}} = 3 \frac{\dot{\varphi}^2 / 2}{\varphi^2 / 2 + V} \]

\[\delta \equiv - \frac{\ddot{\varphi}}{H \dot{\varphi}} = \delta_{\text{can}} + \mathcal{F}(\varepsilon_{\text{can}} - 1) - \frac{\ln (1 + \mathcal{F})'}{2H} \quad \delta_{\text{can}} = \varepsilon_{\text{can}} - \frac{\dot{\varepsilon}_{\text{can}}}{2H\varepsilon_{\text{can}}} \]

- Slow-roll approximation corresponds to

\[\varepsilon, \delta \ll 1 \quad \implies \quad \varepsilon_{\text{can}}, \delta_{\text{can}} \ll 1, \mathcal{F} \ll 1 \]
Consider small inhomogeneities:

\[\lambda = \bar{\lambda} + \delta \lambda \quad g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu} \quad \delta g_{\mu\nu} = \delta g_{\mu\nu}^{(S)} + \delta g_{\mu\nu}^{(T)} \quad \left| \frac{\delta g_{\mu\nu}}{g_{\mu\nu}} \right| \ll 1 \]

\[\delta g_{\mu\nu}^{(S)} = a^2(\eta) \begin{pmatrix} 2\Phi & 0 \\ 0 & -2\Psi \delta_{ij} \end{pmatrix} \quad \delta g_{\mu\nu}^{(T)} = a^2(\eta) \begin{pmatrix} 0 & 0 \\ 0 & h_{ij} \end{pmatrix} \]
Consider small inhomogeneties:

\[\lambda = \bar{\lambda} + \delta \lambda \quad g_{\mu \nu} = \bar{g}_{\mu \nu} + \delta g_{\mu \nu} \quad \delta g_{\mu \nu} = \delta g^{(S)}_{\mu \nu} + \delta g^{(T)}_{\mu \nu} \quad \left| \frac{\delta g_{\mu \nu}}{g_{\mu \nu}} \right| \ll 1 \]

\[\delta g^{(S)}_{\mu \nu} = a^2(\eta) \begin{pmatrix} 2\Phi & 0 \\ 0 & -2\psi \delta_{ij} \end{pmatrix} \quad \delta g^{(T)}_{\mu \nu} = a^2(\eta) \begin{pmatrix} 0 & 0 \\ 0 & h_{ij} \end{pmatrix} \]

Scalar and tensor perturbations decouple; can be treated separately.
Consider small inhomogeneties:

\[\lambda = \bar{\lambda} + \delta \lambda \quad g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu} \quad \delta g_{\mu\nu} = \delta g_{\mu\nu}^{(S)} + \delta g_{\mu\nu}^{(T)} \quad \left| \frac{\delta g_{\mu\nu}}{g_{\mu\nu}} \right| \ll 1 \]

\[\delta g_{\mu\nu}^{(S)} = a^2(\eta) \begin{pmatrix} 2\Phi & 0 \\ 0 & -2\psi \delta_{ij} \end{pmatrix} \quad \delta g_{\mu\nu}^{(T)} = a^2(\eta) \begin{pmatrix} 0 & 0 \\ 0 & h_{ij} \end{pmatrix} \]

- Scalar and tensor perturbations decouple; can be treated separately
- Elkos do not source the tensor perturbation equations and they are free gravitational waves:

\[\mu_T'' + \left(k^2 - \frac{a''(\eta)}{a(\eta)} \right) \mu_T = 0 \]
Issues

- Scalar perturbations are harder to compute even for the scalar fields which have one free real function.
Issues

- Scalar perturbations are harder to compute even for the scalar fields which have one free real function.

- Elkos have 8 real functions and not all are independent.

Such an analysis has not be done for any spinor in the literature!
Linear perturbation

Approach

- Assume the anisotropic stress of the perturbed Elko is zero

\[\Phi \rightarrow \Psi \implies \delta T_{ij} = 0 \quad \forall \quad i \neq j \]
Linear perturbation

Approach

- Assume the anisotropic stress of the perturbed Elko is zero

\[
\Phi \rightarrow \Psi \quad \Rightarrow \quad \delta T_{ij} = 0 \quad \forall \quad i \neq j
\]

- Set the vector perturbations to zero

\[
\delta T_{0i} \propto \partial_i \xi
\]
Linear perturbation

Approach

- Assume the anisotropic stress of the perturbed Elko is zero

\[\Phi \to \Psi \implies \delta T_{ij} = 0 \quad \forall \quad i \neq j \]

- Set the vector perturbations to zero

\[\delta T_{0i} \propto \partial_i \xi \]

- Perturbed Elko must satisfy \([\delta \varphi(x) \text{ is perturbed condensate}]\)

\[\overline{\lambda}^\dagger \delta \lambda + \delta \lambda^\dagger \overline{\lambda} = 2 \overline{\varphi} \delta \varphi \]
Scalar perturbation equation is

\[\mu''_S - \left[-k^2 + \frac{z''}{z} - \ln[1 - \mathcal{F}_\epsilon]' + \frac{7 \mathcal{H}' \mathcal{F}_\epsilon^{\frac{1}{2}}}{2} + \frac{\mathcal{H}_\epsilon \mathcal{F}_\epsilon^{\frac{1}{2}}}{\epsilon} \right] \mu_S = 0 \]

Different from the canonical scalar field
Scalar perturbation equation is

\[
\mu''_S - \left[-k^2 + \frac{z''}{z} - \ln[1 - F_\epsilon]' + \frac{7H'F_{\epsilon}^{\frac{1}{2}}}{2} + \frac{H\epsilon'F_{\epsilon}^{\frac{1}{2}}}{\epsilon} \right] \mu_S = 0
\]

Different from the canonical scalar field

Salient Features

- Elko modification to the canonical MS equation is determined by \(F \).
- This equation is exact.
Upon quantization, in the slow-roll limit $\epsilon, \delta \ll 1$, power-spectra are:

\[
\mathcal{P}_S(k) \simeq \left(\frac{H^2}{8 M_{Pl}^2 \pi^2} \right) \left(\frac{\epsilon + \mathcal{F}}{\epsilon^2} \right) \left[1 - 2(c_0 + 1)\epsilon_{\text{can}} \right]
\]

\[
\mathcal{P}_T(k) = \left(\frac{2H^2}{M_{Pl}^2 \pi^2} \right) \left[1 - 2(c_0 + 1)\epsilon_{\text{can}} + 2\epsilon_{\text{can}} x \right]
\]
Results and implications
Results and implications

\(\mathcal{P}_S(k), \mathcal{P}_T(k), \) during slow-roll, are nearly scale-invariant
Results and implications

- $P_S(k), P_T(k)$, during slow-roll, are nearly scale-invariant.

- Predicts running of spectral index at the leading order of ϵ

\[
\frac{dn_s}{d \ln k} = -\frac{\epsilon_{\text{can}}}{2} - 4\epsilon_{\text{can}} \mathcal{F}_\epsilon^{1/2} + \frac{\epsilon_{\text{can}}}{2} \frac{\mathcal{F}}{1 + \mathcal{F}}
\]

\[
\frac{dn_T}{d \ln k} = 2\epsilon_{\text{can}} \mathcal{F}_\epsilon^{1/2}
\]

Consistent with WMAP data.
Results and implications

- \(\mathcal{P}_S(k), \mathcal{P}_T(k) \), during slow-roll, are nearly scale-invariant

- **Modified consistency relations**: Scalar and tensor perturbations originate from the scalar condensate and they are not independent. Consistency relations link them.

 1. Tensor-to-scalar ratio is \(r \approx 16 \varepsilon_{\text{can}} [1 - 2 \mathcal{F}_\varepsilon] \)

 Tensor contribution is smaller compared to canonical inflation

 2. The other observationally useful is the relation between \(n_T \) and \(r \):

\[
n_T = \frac{r}{8} (1 + \mathcal{F}_\varepsilon) \left[1 + \varepsilon_{\text{can}} \left[\frac{11}{6} c + \mathcal{F}_\varepsilon - \mathcal{F} \right] - 2 \delta_{\text{can}} c \right]
\]

 Different from the scalar field inflation
Results and implications

- $\mathcal{P}_S(k), \mathcal{P}_T(k)$, during slow-roll, are nearly scale-invariant

- **Modified consistency relations:** Scalar and tensor perturbations originate from the scalar condensate and they are not independent. Consistency relations link them.

 1. Tensor-to-scalar ratio is $r \approx 16 \varepsilon_{\text{can}} [1 - 2 F_\varepsilon]$

 Tensor contribution is smaller compared to canonical inflation

 2. The other observationally useful is the relation between n_T and r:

 $$n_T = \frac{r}{8} (1 + F_\varepsilon) \left[1 + \varepsilon_{\text{can}} \left[\frac{11}{6} c + F_\varepsilon - F \right] - 2 \delta_{\text{can}} c \right]$$

 Different from the scalar field inflation

- $\mathcal{P}_S(k), \mathcal{P}_T(k)$, during slow-roll, are nearly scale-invariant

- **Modified consistency relations:** Scalar and tensor perturbations originate from the scalar condensate and they are not independent. Consistency relations link them.

 1. Tensor-to-scalar ratio is $r \approx 16 \varepsilon_{\text{can}} [1 - 2 F_\varepsilon]$

 Tensor contribution is smaller compared to canonical inflation

 2. The other observationally useful is the relation between n_T and r:

 $$n_T = \frac{r}{8} (1 + F_\varepsilon) \left[1 + \varepsilon_{\text{can}} \left[\frac{11}{6} c + F_\varepsilon - F \right] - 2 \delta_{\text{can}} c \right]$$

 Different from the scalar field inflation
Conclusions

Fermions forming a scalar condensate is a real alternative to the scalar field model of inflation.

- It leads to attractor behavior [Basak, Bhat & SS ’11]

- For the first time perturbation equations for a spinor field are derived

- Scalar condensate from Elkos lead to observationally consistent primordial power spectra

- Predicts running of spectral index and modified consistency relations
Issues

- As in the canonical scalar field the form of the potential is unclear.
- Power spectra calculations relies on the slow-roll condition.

Outlook

- Can it lead to large non-Gaussianity? [Basak & SS, Work in progress]
- Can Elko condensate lead to growing vorticies and hence magnetic field? [Work in progress]
Propagator of the Elko field is

\[G^{\text{Elko}} = \int d^4 p \frac{1}{(2\pi)^4} \exp^{-ip_{\mu}(x'^{\mu} - x^{\mu})} \frac{\mathbb{I}}{p^{\mu}p_{\mu} - m^2 + i\epsilon} \]

Compare this with the propagator of the Dirac spinor

\[G^{\text{Dirac}} = \int d^4 p \frac{1}{(2\pi)^4} \exp^{-ip_{\mu}(x'^{\mu} - x^{\mu})} \frac{\gamma^{\mu}p_{\mu} + m\mathbb{I}}{p^{\mu}p_{\mu} - m^2 + i\epsilon} \]

Mass dimension of Elkos is different from Dirac spinors while it is same as Klein-Gordon field
Form of Elkos in the background

- Form of Elko which leads to $T_{ti} = T_{ij} = 0$:

$$
\lambda = \frac{\overline{\varphi}(t)}{\sqrt{12}} \begin{pmatrix}
-\alpha_1 e^{i\pi/4} \\
\alpha_2 \frac{i}{\sqrt{2}} \\
\alpha_2 \frac{1}{\sqrt{2}} \\
\alpha_1 e^{i\pi/4}
\end{pmatrix}
\quad \lambda^\dagger = \frac{\overline{\varphi}(t)}{4\sqrt{12}} \begin{pmatrix}
-\alpha_1 e^{-i\pi/4} & -i\alpha_2 & \alpha_2 & \alpha_1 e^{-i\pi/4}
\end{pmatrix}
$$

$$
\alpha_1 = \alpha_2^{-1} = \sqrt{1 + \sqrt{3}}
$$
Scalar perturbation equations

\[\Delta \Psi - 3 \mathcal{H} \Psi' - (\mathcal{H}' + 2 \mathcal{H}^2[1 + F(\varphi)]) \Psi = 0 \]

\[= \frac{1}{2 M_{\text{Pl}}^2} \left[\varphi' \delta \varphi' + a^2 V_{,\varphi} \varphi \right] + 3 F(\varphi) \mathcal{H} \left[\Psi' - \frac{\mathcal{H}}{\varphi} \delta \varphi \right] \]

\[\Psi' + \mathcal{H}[1 + F(\varphi)] \Psi = \frac{1}{2 M_{\text{Pl}}^2} \varphi' \delta \varphi \]

\[\Psi'' + 3 \mathcal{H} \Psi' + (\mathcal{H}' + 2 \mathcal{H}^2[1 + F(\varphi)]) \Psi = 0 \]

\[= \frac{1}{2 M_{\text{Pl}}^2} \left[\varphi' \delta \varphi' - a^2 \frac{V_{,\varphi}}{2} \delta \varphi \right] - F(\varphi) \mathcal{H} \left[\Psi' - \frac{\mathcal{H}}{\varphi} \delta \varphi \right] \]

\[\delta \varphi'' - \Delta \delta \varphi - \varphi' \left[4 - 3 \left(1 - \varepsilon \right) F_{,\varepsilon} - 3 \sqrt{F_{,\varepsilon}} \right] \Psi' + \mathcal{H} \left[2 + 3 \left(1 - \varepsilon \right) F_{,\varepsilon} + 2 F \right] \delta \varphi' \]

\[+ a^2 \left[V_{,\varphi} \Psi + \frac{1}{2} V_{,\varphi \varphi} \delta \varphi \right] - \frac{3}{4} \mathcal{H}^2 \left[1 - \frac{8}{3} F \left[3 + \frac{\mathcal{G}}{\mathcal{H} \varphi'} - \delta \right] + 4 \left(1 - \varepsilon \right) \sqrt{F_{,\varepsilon}} \right] \delta \varphi \]

\[- 2 \mathcal{H} \varphi' \left[3 + \frac{\mathcal{G}}{\mathcal{H} \varphi'} - \delta \right] \Psi + \frac{2}{\sqrt{3} \mathcal{H}} \varphi' F_{,\varepsilon} \nabla \Psi' = 0 \]
Mukhanov-Sasaki \((Q)\) variable

- \(Q\) is a gauge-invariant linear combination of \(\delta \varphi\) and \(\Psi\)

 Also related to the curvature perturbation \(\mathcal{R}\)

- Unlike scalar field, not possible to obtain \(Q\) directly from \(\delta \varphi\) and \(\Psi\)

 \(\delta \varphi\) is derived from \(\delta \lambda\)

- **Approach:** Assume the relation between \(\mathcal{R}\) and \(Q\) is like that of canonical scalar field.

- This leads to

\[
Q = a \delta \varphi + z \Psi \quad \quad z = [1 - \mathcal{F}_\varepsilon] (a \varphi') / \mathcal{H}
\]
Scalar perturbation equations

Salient Features

- Matter perturbations have one dof — perturbed condensate

Consistent linear perturbation equations
Scalar perturbation equations

Salient Features

- Matter perturbations have one dof — perturbed condensate

 Consistent linear perturbation equations

- Sound speed of perturbations is 1 \(c_s^2 = 1 \)
Scalar perturbation equations

Salient Features

- Matter perturbations have one dof — perturbed condensate

Consistent linear perturbation equations

- Sound speed of perturbations is 1 \(c_s^2 = 1 \)

- Entropic perturbations vanish at super-Hubble scales

\[\delta S \propto \nabla^2 \psi \]
Scalar perturbation equations

Salient Features

- Matter perturbations have one dof — perturbed condensate

Consistent linear perturbation equations

- Sound speed of perturbations is 1 \(c_s^2 = 1 \)

- Entropic perturbations vanish at super-Hubble scales

\[\delta S \propto \nabla^2 \Psi \]

- Curvature perturbation \(\zeta \) is given by

\[\zeta = \Psi + \mathcal{H} \frac{\delta \varphi}{\varphi'} \frac{1}{(1 - F_\epsilon)} \]