Star formation activity around NGC7538-IRS9 region

K K Mallick¹, D K Ojha¹, L K Dewangan¹, M Tamura²
¹Tata Institute of Fundamental Research, Mumbai, India
²National Astronomical Observatory of Japan, Tokyo, Japan

Introduction
- Location: Cassiopeia OB2 complex
- l : 111.57°
b : +0.75°
- Distance: 2.8 kpc
- Motivation: The NGC7538-IRS9 source lies at the apex of the complex reflection nebula towards the southeast of the NGC7538 star forming region (see figure below). It was identified as a protostellar source by Werner et al. (1979, MNRAS, 188, 463). IRS9 also has a powerful bipolar CO outflow which traces the shocked H2 flow from it (Ojha et al., 2004, ApJ, 616, 1042). The extensive reflection nebula is a manifestation of this massive outflow. There is high-mass star formation, in its early stages, going on in this region. Hence, it presents a unique scenario to study the morphology, chemistry and the physical processes involved in such a situation. An interesting feature about this region is that it seems to be undergoing spontaneous star formation, even though it is located close to a triggered star-forming region.

Observations and Analysis

Near infra-red (NIR) observations:

Ks band image of the IRS9 region, obtained with the Subaru telescope (CISCO camera). The field of view is 1.8° x 1.8°. The infra-red excess sources are denoted by red circles. They were obtained with the help of colour-magnitude, H vs. H - K, diagram using the Subaru data. The criterion used was H - K > 2. The classical T-Tauri stars have been marked by blue circles. These were obtained with the help of colour-colour (J-H vs. H - K) diagram using the IRSF data. The Magenta crosses denote the position of stars detected only in Subaru Ks band.

As can be seen from the distribution of the Young Stellar Objects (YSOs), there is no particular age sequence of star formation in the region. Also, going by the stellar population, which shows a large and almost ubiquitous presence of sources detected only in Ks band, the region seems to be extremely young. It also appears that a clustered star formation is ongoing around the IRS9 source.

Molecular line observations:

(left) The C18O (J=1-0) contour lines and (right) H13CO+ (J=1-0) contour lines superimposed on the Subaru Ks band image. These molecular line data were obtained using the 45 m Nobeyama telescope. C18O as well as H13CO+ are tracers of high density regions. We can see that the peak of the formylium molecule lies to the east of the IRS9 source, a region which hardly contains any YSOs. This indicates the presence of highly dense and cold (due to the near-absence of C18O) gas in the neighbourhood of the IRS9 source, and hence that the region is extremely young. The peaks of both the molecules are well separated, which suggests that there are chemical variations going on in the region.

Spectral Energy Distributions (SEDs) of the embedded YSOs

SED modelling was carried out for the infrared excess sources located around the IRS9 source (Robitaille et al., 2007, ApJS, 169, 328). In addition to the Subaru data, archival IR data from Spitzer, MSX, WISE, and sub-mm data from SCUBA were also used, as available.

This diagram shows the SED curve for the IRS9 source. The following table shows the relevant parameters of the YSOs around IRS9:

<table>
<thead>
<tr>
<th>Source</th>
<th>Mass (M⊙)</th>
<th>Age (in log units years)</th>
<th>Disk Accretion Rate (in log units M⊙ yr⁻¹)</th>
<th>Envelope Accretion Rate (in log units M⊙ yr⁻¹)</th>
<th>Luminosity (in log units L⊙)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRS9</td>
<td>19.67</td>
<td>4.99</td>
<td>-5.67</td>
<td>-3.15</td>
<td>4.65</td>
</tr>
<tr>
<td>IRS9N2</td>
<td>9.04</td>
<td>5.45</td>
<td>-7.02</td>
<td>-4.75</td>
<td>3.63</td>
</tr>
<tr>
<td>IRS9N3</td>
<td>8.02</td>
<td>4.58</td>
<td>-7.33</td>
<td>-3.93</td>
<td>3.06</td>
</tr>
<tr>
<td>IRS9N4</td>
<td>24.21</td>
<td>4.50</td>
<td>-8.38</td>
<td>-3.12</td>
<td>4.89</td>
</tr>
<tr>
<td>IRS9N5</td>
<td>9.85</td>
<td>4.38</td>
<td>-8.68</td>
<td>-3.86</td>
<td>3.35</td>
</tr>
</tbody>
</table>

The preliminary SED analysis for all the infrared excess sources around the NGC7538-IRS9 source shows that most of them have their ages in the range 10^²-10^³ years. The mass range varies from 8 to 24 solar masses. This opens up a vista for studying high-mass star formation in the region.