Particle Accelerations – Spectra and their associated CMEs

P.K. Manoharan, E. Elamathi
Radio Astronomy Centre
NCRA-TIFR

IUCAA, Pune
7 September 2011
Outline of the talk

• Some basics particle acceleration mechanisms
 – DC electric field acceleration
 – Shock acceleration
 – Radio emission

• Solar Flares and energetic particle events
 – CME association – particle profile
 – CME propagation and particle spectrum
DC Electric Field Acceleration

Acceleration in static electric fields which are generated in current sheets during magnetic reconnection processes.
Magnetic Mirroring effect

- Tendency for charged particles to bounce back from the high field region
- Particles with a pitch angle greater than a critical value will be reflected, those with a smaller pitch angle will escape.
- Adiabatic invariant

\[\mu = \frac{1}{2} m u^2 \frac{1}{B} \]
Shocks

- Shocks are places where plasma and field go through dramatic changes in density, temperature, field strength, and/or flow speed.

- Play important role in the solar corona and interplanetary space, since they are able to accelerate the particles up to high energy.

- In solar corona, these can be produced by either by blast waves due to huge pressure pulse accompanying the flare or as a piston driven shocks i.e. Bow shock of a propagating/rising CME.
Type II and III Bursts
Shock acceleration in CMEs and Type II burst
Changes in orientation of filament - signature of magnetic reconnection.
Evolution of 2B/M9.6 Flare in Hα

Impulsive flare starts with two filaments reconnection and dark cusp formed during impulsive/maximum phase.
Solar Energetic Particle (SEP) Events

Associated with explosive phenomenon on the Sun

• SEP events – 2 types – Impulsive and Gradual
 – Impulsive events have their origin at rapid short duration flares (≤30 min. duration)
 – Dominated by electrons, 3He, and heavy ions
 – Flare energy release processes play a key role in particle acceleration

• Gradual Events
 – Associated with large/fast coronal mass ejection (CME) events
 – Rich in protons
 – CME-driven shock accelerates particle in the IP space
SEP Events and their CMEs

• We consider 57 intense SEP events during 1989-2006
 – Events of flux >1 proton/s/cm²/sr/MeV at 50 MeV
 – Cover periods during solar cycles 22 and 23
 – 31 of them caused Ground Level Enhancements (GLEs)

• Associated with intense flares plus large and fast CMEs
 – Most of them are associated with X-class flares
 – Halo and partial halo CMEs (width >180 degrees)
 – Fast CMEs – average initial speed >1000 km/s

• Most of them produced strong shock at 1 AU

• Particle Spectrum in the energy range 10 – 100 MeV
 – Spectral evolution between Sun and Earth (i.e., from CME onset to shock arrival at 1 AU) is studied.
13 December 2006 Flare/CME

X3.4 S05W23

Halo CME, speed ~1775 km/s
Spectrum in the energy range 10 – 100 Mev (~E\(^{-y}\)) at every 3-hour interval from event onset.
When the magnetic connectivity between particle acceleration site and Earth is well established – flux profiles at different energies peak nearly same time
Spectrum in the energy range 10 – 100 MeV (\(\sim E^{-\gamma}\)) at every 3-hour interval from event onset.
Spectral index (γ) between particle onset and Shock arrival at 1 AU

Spectrum steepens with distance from the Sun and steepening differs

$E^{-\gamma}$ (10 – 100 MeV range)
Development of magnetic connectivity with time and peaking of flux profile
Location of SEP events between 1989 and 2006

Origin of particle events crowded to the western hemisphere of the Sun (>10º east longitude)
- Suggests the required magnetic connectivity between particle acceleration site and earth
Coronal magnetic field and properties of the solar wind are intimately related. In the closed field regions flow speed is low. In the open field sites, i.e., above the coronal holes, the speed tends to be high.
Events associated with fast/wide CMEs show spectral evolution (γ) in the range $0.5 - 2.5$; Particle events observed during solar cycle 22 are flatter than events of cycle 23.
IPS images of 14 July 2000 CME
Radial profile of the CME in LASCO and IPS FOV

- At distances \(< 100 \, R_\odot \)
 - \(V_{\text{CME}} \sim R^{-0.08} \)
 - and
- At distance \(> 100 \, R_\odot \)
 - \(V_{\text{CME}} \sim R^{-0.72} \)

CME Propagation – “Sun-Earth” distance

All the CMEs decelerated in the Sun-Earth distance

Constant V_{ICME} speed in the Sun-Earth distance associated with an interacting CME
6 hours after flare onset

15 hours after flare onset

Spectral Index (γ)

CME Initial Speed (km/s)

-2
-1
0
1000
1500
2000
2500
Summary

• In general, the energy spectrum steepens with distance from the Sun.

• SEP events associated with intense flares and fast/wide CMEs are flatter than events originated from slow CME:
 – they show only marginal steepening in the Sun-Earth space.
 – Whereas, events of slow CME (or less intense flare) steepen heavily (i.e., rapidly) with distance from the Sun.

• Acceleration of low-energy protons (<50 MeV) seems to be efficient in front of the IP shock than high energy particles – it also can lead to steepening of the spectrum with distance from the Sun.

• For CMEs having excess internal magnetic energy, the SEP spectrum shows no significant change or flattens with distance from Sun.

• The initial speed of the CME may not play significant role in the spectral evolution – it requires more work!
Thank You
Thank You
Solar cycle #22

Solar cycle #23

Spectral Index (γ)

(♦) 7.5 hours before mid way
(♦) 7.5 hours after mid way

YEAR

-4 -3 -2 -1 0 1 2 3 4
In this region, CME has excess energy (internal magnetic energy) to support propagation as well as to sustain shock in front of the CME. CME possesses excess energy.

\[V_{AVG} = \frac{\sim 1 \text{ AU}}{\text{CME Travel Time}} = \frac{V_{EST} + V_{ICME}}{2} \]

\[V_{EST} > V_{INI} \]

Spectral flattening

In this region, CME simply decelerates?
The left movie shows an ecliptic cut through the 3D Ooty IPS density reconstruction and the right movie show a meridional cut (from East of the Sun-Earth line) of the same; both with the Earth on the right-hand side and it’s orbit shown in each case.
Speed Profiles: $V_{\text{CME}(R)}$
Spectral index (γ) between particle onset and shock arrival at 1 AU.

Spectrum flattens with distance from the Sun.
Relativistic Particle Energies

- Thermal electrons in solar corona (T~1MK) have non-relativistic speeds $v/c \sim 0.018$

- If such an electron is accelerated about 4 times the thermal speed so $v/c \sim 0.07$ (still non-relativistic), but can produce radio emission at plasma frequency.

- Hard X-ray are produced by electrons with typical energies of ~ 20-100 keV, they are mildly relativistic having $v/c \sim 0.2$-0.5

- Gyrosynchotron emission & electron bremsstrahlung in gamma ray are produced by highly relativistic electrons with energies of ~ 0.3-10 MeV & relativistic speed ~ 0.8 c
Shock acceleration in coronal flare

Applications of shock acceleration to solar flares:
- First-order Fermi in mirror trap in flare loop cusp
- Fast shock in reconnection outflow above flare loop
- Type II as shock front signature in interplanetary space
Type II, III, and IV Bursts
Energetic Flare and CME (October 2003)

Emerging Flux tube

Active Region 486

Magnetogram

Ejection CME

X17-Flare/CME on 28 October 2003

1. electrons are energized by shock drift acceleration

2. observed photon fluxes in the range 7.5-10 MeV are well explained
IPS Image and Radial profile of the CME occurred on 2005 Jan 20

Ooty scintillation image (left) and CME speeds (right) from the estimations by Gopalswamy et al. (2005) and the measurements from the Ooty interplanetary scintillation observations during 20–21 January 2005.