Aspects of Scalar Field Dynamics in Gauss-Bonnet Brane Worlds

M. Sami

IUCAA, Post Bag 4, Ganeshkhind,
Pune 411 007, India.

N. Savchenko and A. Toporensky

Sternberg Astronomical Institute, Universitetski Prospect–13,
Moscow 119899, Russia

The Einstein-Gauss-Bonnet equations projected from the bulk to brane lead to a complicated Friedmann equation which simplifies to $H^2 \sim \rho^q$ in the asymptotic regimes. The Randall-Sundrum (RS) scenario corresponds to $q = 2$ whereas $q = 2/3$ & $q = 1$ give rise to high energy Gauss-Bonnet (GB) regime and the standard GR respectively. Amazingly, while evolving from RS regime to high energy GB limit, one passes through a GR like region which has important implications for brane world inflation. For tachyon GB inflation with potentials $V(\phi) \sim \phi^p$ investigated in this paper, the scalar to tensor ratio of perturbations R is maximum around the RS region and is generally suppressed in the high energy regime for the positive values of p. The ratio is very low for $p > 0$ at all energy scales relative to GB inflation with ordinary scalar field. The models based upon tachyon inflation with polynomial type of potentials with generic positive values of p turn out to be in the 1σ observational contour bound at all energy scales varying from GR to high energy GB limit. The spectral index n_s improves for the lower values of p and approaches its scale invariant limit for $p = -2$ in the high energy GB regime. The ratio R also remains small for large negative values of p, however, difference arises for models close to scale invariance limit. In this case, the tensor to scalar ratio is large in the GB regime whereas it is suppressed in the intermediate region between RS and GB. Within the framework of patch cosmologies governed by $H^2 \sim \rho^p$, the behavior of ordinary scalar field near cosmological singularity and the nature of scaling solutions are distinguished for the values of $q < 1$ and $q > 1$. The tachyon dynamics, on the other hand, exhibits stable scaling solutions $\forall q$ if the adiabatic index of barotropic fluid $\gamma < 1$.

PACS numbers: 98.80.Cq, 98.80.Hw, 04.50.+h

I. INTRODUCTION

Being inspired by D-brane ideology in string theory, the brane world scenario a la Randall-Sundrum (RS) [1, 2] envisages that our four dimensional space time (brane) is embedded in the 5-dimensional bulk. To be in line with string theory, it is assumed that all the standard model degrees of freedom reside on the brane where as gravity can propagate into bulk. In adherence to Newtonian gravity in the low energy limit, the bulk is assumed to be anti de-Sitter allowing gravity to be localized near the brane dynamically and thereby leading to Newton’s law with small corrections at large distances. The space time dynamics projected from the bulk to brane leads to the modified Einstein equations on the brane. The resulting Hubble equation on the FRW brane, among other things, contains high energy corrections which have important implications for early universe physics. In particular, the prospects of inflation are enhanced in brane world cosmology. In the case of standard FRW, the steep potentials can not support inflation and bouncing solutions. The presence of the quadratic density term (high energy corrections) in the Friedmann equation on the brane changes the expansion dynamics at early epochs [3] (see Ref [4] for details on the dynamics of brane worlds). Consequently, the field experiences greater damping and rolls down its potential slower than it would during the conventional inflation. Thus, inflation in the brane world scenario can successfully occur for very steep potentials [5, 6]. Thebrane assisted inflation allows to build successful models of quintessential inflation [7]. However, the recent WMAP observations and large scale galaxy clustering studies severely constraint the steep brane world inflation. For instance, the inflation driven by steep exponential potential in RS scenario is excluded by observation for the number of e-folds as large as 70 [8]. It was recently shown that Gauss-Bonnet (GB) correction in the bulk could rescue these models [9].

There is a sound theoretical reason to include the higher curvature terms in Einstein-Hilbert action [10, 11]. These terms arise perturbatively as next to leading order correction in effective string theory action. The Gauss-Bonnet combination is special in five dimensions as it is a unique invariant which leads to field equations of second order...
linear in the highest derivative thereby ensuring a unique solution [10]. The Einstein-Gauss-Bonnet equations projected on to the brane lead to a complicated Hubble equation in general [13, 14, 15, 16] (see also Ref [17]). Interestingly, it reduces to a very simple equation $H^2 \sim \rho^3$ with $g = 1, 2, 2/3$ in limiting cases corresponding to GR, RS and GB regimes respectively. In the high energy GR regime, this allows to push the spectral index n_S very close to one for exponential potential in case of ordinary scalar field [14]. The tachyonic inflation is naturally arisen in the dynamical history of the brane universe [9, 14, 15, 18]. In what follows we shall address the issues of tachyon inflation in the background described by (2) & (3). We shall also investigate the specific features of ordinary scalar field near singularity and look for the scaling solutions in the patch cosmologies.

Section IV is devoted to the study of non-inflationary dynamics of ordinary scalar field in the background described by the effective 4D Newton constant is defined by [15]

$$\kappa_5^2 = \frac{8\pi}{M_5^2} = \frac{\kappa_5^4 \lambda}{6(1 - 4\alpha \Lambda_5/9)}. \quad (4)$$

When $\alpha = 0$, we recover the RS expression. We can fine-tune the brane tension to achieve zero cosmological constant on the brane [15]:

$$\kappa_5^4 \lambda^2 = -4\Lambda_5 + \frac{1}{\alpha} \left[1 - \left(1 + \frac{4}{3} \alpha \Lambda_5 \right)^{3/2} \right]. \quad (5)$$

Equations (4) and (5) may be rewritten as

$$\kappa_5^4 \lambda = 2\kappa_5^3 (1 + 4\alpha \mu^2) (3 - 4\alpha \mu^2), \quad (6)$$

$$\kappa_5^4 \lambda = 2\mu (3 - 4\alpha \mu^2). \quad (7)$$

These equations imply

$$\frac{\kappa_5^4 \lambda}{\mu} = \frac{1 + 4\alpha \mu^2}{\mu}. \quad (8)$$

The modified Friedman equation (2), together with Eq. (4), shows that there is a characteristic GB energy scale [18]

$$M_{GB} = \left[\frac{2(1 - 4\alpha \mu^2)^{3/2}}{\alpha \kappa_5^2} \right]^{1/8}, \quad (9)$$

such that the GB high energy regime ($\chi \gg 1$) is characterized by $\rho + \lambda \gg M_{GB}^4$. If we consider the GB term in the action as a correction to RS gravity, then M_{GB} is greater than the RS energy scale $\lambda^{1/4}$ and it imposes a restriction on the Gauss-Bonnet coupling $\beta \equiv \alpha \mu^2$ [18]:

$$\lambda < M_{GB}^4 \Rightarrow \beta < 0.038. \quad (10)$$

Expanding Eq. (2) in χ, we find three regimes for the dynamical history of the brane universe [14, 15, 18]:

$$\rho \gg M_{GB}^4 \Rightarrow H^2 \approx \frac{\kappa_5^2}{16\alpha \rho} \left(GB \right), \quad (11)$$

$$M_{GB}^4 \gg \rho \gg \lambda \Rightarrow H^2 \approx \frac{\kappa_5^4 \lambda^2}{6\lambda \rho} \left(RS \right), \quad (12)$$

$$\rho \ll \lambda \Rightarrow H^2 \approx \frac{\kappa_5^4 \lambda^2}{3 \rho} \left(GR \right). \quad (13)$$

In what follows we shall address the issues of tachyon inflation in the background described by (2) & (3). We shall also investigate the specific features of ordinary scalar field dynamics in the extreme regimes given by [14, 12 & 13].

II. GAUSS-BONNET BRANE WORLDS

The Einstein-Gauss-Bonnet action for five dimensional bulk containing a 4D brane is

$$S = \frac{1}{2\kappa_5^2} \int d^5x \sqrt{-g} \left[R - 2\Lambda_5 + \alpha \left(R^2 - 4R_{AB}R^{AB} \right) + R_{ABC}R^{ABC}\right] + \int d^4x \sqrt{-h} (L_m - \lambda), \quad (1)$$

R refers to the Ricci scalar in the bulk metric g_{AB} and h_{AB} is the induced metric on the brane; α has dimensions of (length)2 and is the Gauss-Bonnet coupling, while λ is the brane tension and $\Lambda_5 (< 0)$ is the bulk cosmological constant. The constant κ_5 contains the 5D fundamental energy scale ($\kappa_5^2 = M_5^{-3}$).

A Friedman-Robertson-Walker (FRW) brane in an AdS$_5$ bulk is a solution to the field and junction equations [12]. The modified Friedman equation on the (spatially flat) brane may be written as [13, 15]

$$H^2 = \frac{1}{4\alpha} \left[(1 - 4\alpha \mu^2) \cosh \left(\frac{2\chi}{3} \right) - 1 \right], \quad (2)$$

$$\kappa_5^2 (\rho + \lambda) = \left[\frac{2(1 - 4\alpha \mu^2)^{3/2}}{\alpha} \right]^{1/2} \sinh \chi, \quad (3)$$

where χ is a dimensionless measure of the energy-density. In order to regain general relativity at low energies, the effective 4D Newton constant is defined by [15]
III. TACHYON INFLATION ON THE GAUSS-BONNET BRANE

It was recently suggested that rolling tachyon condensate, in a class of string theories, might have interesting cosmological consequences. It was shown by Searle\cite{14,20} that the decay of D-branes produces a pressure-less gas with finite energy density that resembles classical dust. Attempts have been made to construct viable cosmological model using rolling tachyon field as a suitable candidate for inflaton, dark matter or dark energy\cite{21}. As for the inflation, the rolling tachyon models face with difficulties related to the requirement of enough inflation and the right level of density perturbations. It seems to be impossible to meet these requirements if we stick to string theory tachyons. In what follows we shall consider the inflation, the rolling tachyon models are faced with difficulties associated with reheating\cite{22} and the formation of caustics/kinks\cite{23}, and we do not address these problem in this paper. We should, however, note that the model based upon the rolling massive scalar field on D_3 brane is free from these difficulties\cite{24}, perhaps, except the formation of caustics, which requires further investigation\cite{11}.

The tachyonic field is described by the following action

$$ S = \int d^4x \left\{ \sqrt{-g} \left(\frac{R}{2\kappa^2} \right) - V(\phi) \sqrt{1 - \dot{\phi}^2} \det(g_{ab} + \partial_a \phi \partial_b \phi) \right\}. \quad (14) $$

In a spatially flat Friedmann-Robertson-Walker (FRW) background, the energy momentum tensor which is equivalent to the conservation equation

$$ \frac{\dot{\rho}}{\rho} + 3H(1 + w) = 0, \quad (18) $$

which is equivalent to the conservation equation

$$ \frac{\dot{\phi}}{\rho} + 3H(1 + w) = 0, \quad (18) $$

We now describe inflation on the brane assuming slow roll approximation, $\dot{\phi}^2 \ll V$ and $|\dot{\phi}| \ll H|\phi|$. The energy density becomes $\rho \sim V(\phi)$ and using Eqs. (8) and (16) we obtain (for the weak GB coupling defined by ϵ_G)

$$ V \simeq \sqrt{\left(\frac{\lambda}{3 \kappa_4 \kappa^2} \right) \sinh \chi}. \quad (19) $$

The slow-roll parameters in this case become

$$ \epsilon = \left(\frac{2\lambda V_0^2}{\kappa_4^2 V_4^2} \right) \epsilon_{GB}, $$

$$ \eta = \left(\frac{2\lambda}{\kappa_4^2 V_4^2} (\ln V)_{\phi \phi} \right) \eta_{GB}, \quad (20) $$

where the GB corrections to the RS values are given by

$$ \epsilon_{GB} = \left[\frac{2 \sinh(2\chi/3) \tanh \chi \sinh^2 \chi}{27 (\cosh(2\chi/3) - 1)^2} \right], $$

$$ \eta_{GB} = \left[\frac{2 \sin^2 \chi}{9 \cosh(2\chi/3) - 1} \right]. \quad (21) $$

The number of e-folds of inflationary expansion, $N = \int H dt$, is obtained using (2) and (17), which is given by

$$ N = 3 \int_{\chi_0}^{\chi} \frac{V}{V_4} \left(\frac{d\phi}{d\chi} \right)^2 d\chi, \quad (22) $$

which using Eqs. (17) and (19) takes the form

$$ N(\chi) = \frac{3}{4\epsilon} \int_{\chi_0}^{\chi_{end}} d\chi \left(\frac{d\phi}{d\chi} \right)^2 (\cosh(2\chi/3) - 1) \tanh \chi. \quad (23) $$

We should note that we have used the weak coupling nature of GB correction while writing Eqs. (19), (20) and (23).

A. Inflation with Polynomial Type Potential

We shall now assume that the potential for Born-Infeld scalar field is

$$ V(\phi) = V_0 \phi^p, \quad (24) $$

where V_0 and p are constants. We are mainly interested in the cases of $p = 2$ (massive inflaton), $p = 4$ (massless inflaton) and $p \to \infty$ (exponential potential). For the potential (24) two slow-roll parameters can be written as

$$ \epsilon = \frac{4\lambda p^2 V_0^{2/p}}{27 \kappa_4^2 A^{2(p+1)/p} f(\chi)}, $$

$$ \eta = - \frac{4\lambda p V_0^{2/p}}{9 \kappa_4^2 A^{2(p+1)/p} g(\chi)}, \quad (25) $$

where $A = \sqrt{3\lambda/\kappa_4^2}$ and $f(\chi), g(\chi)$ are given by

$$ f(\chi) = \frac{\sinh(2\chi/3) \tanh \chi (\sinh \chi)^{2/p}}{[\cosh(2\chi/3) - 1]^2}, $$

$$ g(\chi) = \frac{(\sinh \chi)^{-2/p}}{[\cosh(2\chi/3) - 1]}. \quad (26) $$
A comment on the behavior of slow roll parameters is in order. As pointed out in Ref. [21], both ϵ and η exhibit a peculiarity for $p = 6$ (in case of ordinary scalar field inflation) in the region $\chi << 1$: they are increasing functions of χ for $p < 6$ whereas the situation is reversed for $p > 6$. It turns out that $p = 6$ case, also gets distinguished for large values of χ, i.e. in the GB regime where the dynamics is described by a simple equation $H^2 \sim \rho^{2/3}$. Indeed, in region $\chi >> 1$, the the slow roll parameters behave as

$$
\epsilon, \eta \propto \chi^{(p-6)/3p} \quad \text{(Ordinary scalar field)}, \quad (27)
$$

$$
\epsilon, \eta \propto \chi^{-(3+p)/3p} \quad \text{(Tachyon field)}. \quad (28)
$$

It is clear from Eqs. (27) & (28) that in the GB regime, the slow roll parameters exhibit a specific behavior in case $p = 6$ for ordinary scalar field whereas the similar behavior is realized for tachyon field if $p = -3$ [22] (see Ref. [22] which deals with similar problem in case of RS and standard GR). After a brief remark on the scalar field dynamic in patch cosmology, we return to the full dynamics described by (2) & (3). We now compute the number of inflationary e-foldings for polynomial potential [24]

$$
\mathcal{N} = -\frac{3V_0}{8\alpha p^2 A^{2/p}} \int_{\chi_N}^{\chi_{end}} d\chi \left[\frac{\cosh(2\chi/3) - 1}{(\sinh(\chi))^{2(p-1)/p}} \sinh(2\chi) \right]. \quad (29)
$$

For a general p, it is not possible to get a close analytical expression for \mathcal{N}. However, for particular values $p = 2$, ∞, the integral in (29) can be computed analytically. For one of the values of interest $p = 4$, we shall opt for the numerical computation of the integral. It will be instructive to present the expression for the number of e-foldings , in general, as follows

$$
\mathcal{N} = \frac{3}{8\alpha p^2 V_0 A^{2/p}} \left[F(\chi_N) - \frac{2p}{9(1+p)} \chi_e^{2(p+1)/p} \right]. \quad (30)
$$

In order to estimate the maximum number of e-foldings, we can assume that inflation ends in the RS regime ($\chi << 1$) which allows us to write (30) as

$$
\mathcal{N} = \frac{3}{8\alpha p^2 V_0 A^{2/p}} \left[F(\chi_N) - \frac{2p}{9(1+p)} \chi_e^{2(p+1)/p} \right]. \quad (31)
$$

We observe that the slow roll parameter ϵ scales as $\chi^{2(p+1)/p}$ for $\chi << 1$ which helps to estimate the value χ_e at the end of inflation

$$
\chi_e^{2(p+1)/p} = \frac{2\alpha p^2 V_0}{\kappa^2 A^{2(p+1)/p}} \quad (32)
$$

$$
\chi_e^{2(p+1)/p} = \frac{9(1+p)}{2[2\mathcal{N}(p+1)]} F(\chi_N), \quad (33)
$$

which for $p \to \infty$ reduces the expression for χ_e obtained in Ref [27] for exponential potential. We now give the analytical expressions for the function F for $p = \pm 2, \infty$

$$
F(\chi) = \frac{4}{5} \left[6 \cosh(2\chi/3) - 1 \right] \sinh^3(\chi/3) \quad (p = 2),
$$

$$
F(\chi) = 3 \cosh(2\chi/3) - \ln(1 + 2 \cosh(2\chi/3)) + 2 \ln(\sinh(\chi/3) - 2 \sinh(\chi)) + 3(\ln(3) - 1) \quad (p = \infty),
$$

$$
F(\chi) = \frac{4}{\sqrt{3}} \left[2 \sinh(\chi/3)/\sqrt{3} \right] - \frac{4 \sinh(\chi/3)}{1 + 2 \cosh(2\chi/3)} \quad (p = -2), \quad (34)
$$

whereas for other values of p, the function $F(\chi)$ should be evaluated numerically.

The slow roll parameters can now be cast entirely as a known function of χ_N

$$
\epsilon = \frac{(p + 1)F(\chi_N)}{3[2\mathcal{N}(p+1) + p]} \left[\frac{\sinh(2\chi_N/3) \tanh(\chi_N \sinh(\chi_N))^{-2/p}}{[\cosh(2\chi_N/3) - 1]^2} \right],
$$

$$
\eta = -\frac{(p + 1)F(\chi_N)}{p[2\mathcal{N}(p+1) + p]} \left[\frac{\sinh(\chi_N)^{-2/p}}{[\cosh(2\chi_N/3) - 1]} \right] \quad (35)
$$

which for $p \to \infty$ corresponds to the case of exponential potential; the slow roll parameter η vanishes in this limit and (35) reduces to the expression obtained in Ref. [27].

As mentioned above, the cases corresponding to $p = 2$ and $p = \infty$ (exponential potential) can be treated analytically. In case of $p = 4$, we get complicated combinations of hyper-geometric functions; it is not very illuminating to produce theme in the text and we have studied this case numerically. We have ensured that the numerics in case of $p = \pm 2$ and $p = \infty$ produces our analytical results. In Figs. 1 & 2 we have plotted the slow roll parameters ϵ and η for three cases. We observe that for large values of p, the slow roll parameter ϵ has minimum in the intermediate region which increases and approaches a constant value as we move towards the GB regime (large values of χ_N). The minimum becomes less and less pronounced for smaller values of p. The slow roll parameter $\eta \equiv 0$ in case of the exponential potential, whereas in other two cases, it represents a monotonically increasing function of χ_N approaching a constant value in the GB regime (see Fig. 2). It is interesting to compare these features with GB inflation in case of ordinary scalar field. In the later case, the slow roll parameters are monotonically increasing function of χ_N for large values of p in contrast to the GB tachyonic inflation where they assume a minimum value in the intermediate region and then gradually approach a constant value. Secondly, numerical values of these parameters, at all energy scales and for $\forall p > 0$, remain much smaller than their counter parts associated with ordinary scalar field GB inflation.
The amplitude of density perturbations in this case is given by \[^{28}\]

\[A_S^2 = \left(\frac{H^2}{2\pi^2\phi} \right)^2 \frac{1}{Z_S}, \quad (38) \]

where \(Z_S = -(f_{,\chi}/2 + f_{,X}X) = V(1 - \phi^2)^{-3/2} \). Under the slow-roll approximation, the power spectrum of curvature perturbations is estimated to be \(^{28}\)

\[A_S^2 = \left(\frac{H^2}{2\pi^2\phi} \right)^2 \frac{1}{V}, \quad (39) \]

The extra piece of \(V \) occurring in \(^{39}\) leads to the modified expression for spectral index \(n_S \) in case of tachyon field

\[n_S - 1 = \left. \frac{d\ln A_S^2}{d\ln k} \right|_{k=aH} = -(4 + \theta(\chi))\epsilon + 2\eta, \quad (40) \]

where \(\theta(\chi) \) is given by

\[\theta(\chi) = 2 \left(1 - \frac{3\mathcal{G}(\chi)}{2} \right), \]

\[\mathcal{G}(\chi) = \frac{(\cosh(2\chi/3) - 1)}{\sinh(2\chi/3)} \coth(\chi) \quad (41) \]

We have used Eqs. \(^{22, 30}\) in deriving \(^{41}\). The function \(\theta(\chi) \) encodes the GB effects for tachyon inflation. It interpolates between 1 and \(-1\) \((\mathcal{G}(\chi) \text{ varies from zero to 1})\) as \(\chi \) varies from RS to GB limit (Fig. 3) which is in confirmation with the findings of Refs. \(^{22, 30}\) in extreme limits.

The tensor perturbations in brane world with Gauss-Bonnet term in the bulk were recently studied in Ref.\(^{18}\). The amplitude of tensor perturbations was shown to be given by

\[A_T^2 = \left[\kappa^4 \frac{H^2}{4\pi^2} \right] \mathcal{F}_\beta(H/\mu), \quad (42) \]

where the function \(\mathcal{F}_\beta \) contains the information about the GB term

\[\mathcal{F}_\beta^{-2} = \sqrt{1 + x^2} - \left(\frac{1 - \beta}{1 + \beta} \right) \sinh^{-1} x^{-1} \quad (x \equiv H/\mu). \quad (43) \]

The dimensionless variables \(x \) and \(\chi \) associated with energy scales are related to each other via the Eqs. \(^{22, 43}\).

The tensor spectral index in this case is

\[n_T = \left. \frac{d\ln A_T^2}{d\ln k} \right|_{k=aH} = -\epsilon G_\beta(x), \quad (44) \]

where \(G_\beta(x) \) is given by

\[G_\beta(x) = 1 - \frac{x\mathcal{F}_\beta^2 \left(1 - (1 - \beta) \sqrt{1 + x^2} \sinh^{-1} x^{-1} \right)}{(1 + \beta^2) \sqrt{1 + x^2}} \quad (45) \]
The tensor to scalar ratio is defined as
\[R = 16 \frac{A_T^2}{A_S^2} \]
(46)

Following Ref[18], we have the expression for the tensor to scalar ratio \(R \)
\[R = -8Q(x)n_T, \]
\[Q(x) = \frac{(1 + \beta + 2\beta x^2)}{(1 + \beta + \beta x^2)}, \]
(47)

where \(Q \) carries the information of GB correction. It determines the size of breaking of degeneracy of the consistency relation in Gauss-Bonnet brane world inflation. We finally express the ratio of perturbations through the spectral index using Eqs. (40), (44) and (47) as
\[R = D(\chi_N) \left[\frac{8}{4 + \theta}(1 - n_S) + \frac{16}{(4 + \theta)} \eta \right], \]
(48)

where \(D(\chi_N) = Q(\chi_N)G_\beta(\chi_N) \). Knowing the slow roll parameters and the functions \(D(\chi_N) \) & \(\theta(\chi) \), we can evaluate the spectral index \(n_S \) and the ratio \(R \). In Figs. 4 & 5, we have displayed their dependence on the dimensionless energy scale \(\chi_N \). The spectral index rises to maximum in the intermediate region and then gradually decreases approaching a constant value in GB regime (\(\chi_N \gg 1 \)). It improves in general for lower values of \(p \) (\(p > 0 \)). In case of the exponential potential, the maximum value of the spectral index is nearly equal to 0.97 for \(N = 60 \) which is consistent with the result obtained earlier in [27].

C. Asymptotic Scale Invariance in GB Tachyon Inflation

As seen in Fig. 6, the spectral index \(n_S \) improves for lower values of the exponent \(p \). It would really be interesting to compare this situation with the standard inflationary scenario in presence of the GB correction in the bulk. In this case, the spectral index shows a very different behavior relative to the tachyonic GB inflation for exponential potential. It monotonously increases and approaches 1 for large \(\chi_N \). Actually, the exponential potential is special to ordinary GB inflation which is related to the fact that scale invariance is exact in this case if the background dynamics is governed by the Hubble equation \(H^2 \sim \rho^{2/3} \). And this is certainly not true for tachyon field as it is governed by different dynamics. Interestingly, exact scaling for tachyon GB inflation is realized by a field potential very different from the exponential function. Indeed, let us consider the slow roll parameters in the background described by \(H^2 \sim \rho^\epsilon \)
\[\epsilon = \frac{q}{6H^2} \left(\frac{V_{\phi\phi}}{V} \right)^2, \]
\[\eta = \frac{1}{3H^2} \langle \ln V \rangle_{,\phi\phi}, \]
(49)

which for the power law type of potential \(V \sim \phi^p \) leads to the following expression for the spectral index \(n_S \) in the asymptotic limit \(\chi_N \gg 1 \)
\[n_S - 1 = -\frac{1}{3H^2} \left(\frac{(4 + \theta)pq + 2}{2} \right) \frac{p}{\phi^2} \]
(50)

In deriving Eq. (50), we have used Eq. (41). It should be noted that the general expressions of slow roll parameters [20] reduce to [19] in the limits of small \(\chi \) with \(q = 2 \) and large \(\chi \) with \(q = 2/3 \) and that Eq. (50) is valid in the asymptotic regimes \(\chi_N \ll 1 \) (RS − regime) and \(\chi_N \gg 1 \) (GB − regime). For scale invariance of spectrum, the (RHS) of (50) should vanish leading to the simple relation
\[p = -\frac{4}{q(4 + \theta)}, \]
(51)

which gives rise to \(p = -2 \) for GB patch (\(q = 2/3 \)) and \(p = -2/5 \) in case of RS patch (\(q = 2 \)), in agreement with the result obtained in [30]. Here we have taken into account that \(\theta(\chi) \rightarrow \pm 1 \) in the limits of \(\chi_N \ll 1 \) and \(\chi_N \gg 1 \) respectively. Our treatment of the full dynamics confirms this feature in the high energy GB regime (see, Fig. 7).

We have also considered models corresponding to larger inverse powers than the inverse square potential. We find that the numerical values of \(n_S \) for \(p \leq -3 \) are lower as compared to the case of an exponential potential (Fig. 7) and approach the later in the limit of large negative \(p \). The crossing takes place for \(p > -3 \) allowing the scale invariant limit to be reached for \(p = -2 \).

D. Tensor to Scalar Ratio of Perturbations \(R \)

The behavior of the tensor to scalar ratio of perturbations is dictated by the features possessed by the functions \(D(\chi_N) \) and \(n_S \). The ratio \(R \) is plotted in Fig. 8.
The function R peaks around the RS regime which subsequently decreases to minimum and increases thereafter approaching a constant value in the GB regime. This is a very important feature of GB inflation common to both tachyonic as well as non-tachyonic models. The RS value of the ratio R is generally larger relative to the case of GR. The minimum of the function R is attributed to the fact that while passing from RS regime characterized by $H^2 \sim \rho^2$ to the high energy GB limit with $H^2 \sim \rho^{2/3}$, there is an intermediate region which mimics the GR like behavior. In case of lower values of ρ, the minimum of R is not distinguished. The numerical values of R as a function of χ_N are generally smaller for less steeper potentials. We find that the tensor to scalar ratio of perturbations is very low for all the values of the exponent $p > 0$ at all the energy scales thereby providing support to the recent analysis of Ref.[30] in the limiting cases. The tachyonic model of inflation with polynomial type of potentials is within the 1σ contour bonds at all energy scales for $p > 0$ (see Fig. 10 and the observational contours given in Ref.[31], also see Ref.[32] on the related theme). In case of the run away potentials for small negative values of p, the tensor to scalar ratio becomes large for large values of χ_N and it is suppressed in the intermediate region (Fig. 9). Thus, there is a possibility for these models to be consistent with observation in the intermediate region between RS and GB which is analogous to ordinary scalar field GB inflation with steep potentials. Finally, we should remark that the dimensionless density scale can not increase indefinitely, it is restricted by the quantum gravity limit which corresponds to $\rho < \kappa_5^{-8/3}$.

$$\frac{\alpha^3\lambda}{\kappa_4} > 48 \sinh^6(\chi_N) \quad (52)$$

Using Eqs. (56), (62) & (63) along with COBE normalized value of density perturbations, we can express $\alpha^3\lambda/\kappa_4^2$ entirely, as a function of energy scale χ_N and the number of e-folds N. The constraint (52) then leads to an upper bound on the variable χ_N. In case of ordinary scalar field GB inflation, it was very important to find these bounds as the tensor to scalar ratio R, in general, is a monotonously increasing function of χ_N which becomes large in high energy GB regime. In our case, as mentioned above, the ratio remains very low for all values of χ_N in case of any generic positive value of p. However, it is true that it makes sense to consider only those values of the energy scale which are consistent with (52). The upper bounds on χ_N in our model lies between 6 & 7 in these cases.

IV. ISSUES OF SCALAR FIELD DYNAMICS IN $H^2 \sim \rho^q$ COSMOLOGY

So far, three particular models of the form $H^2 \sim \rho^q$ have been considered in the literature. These include: standard cosmology($q = 1$), the Randall-Sundrum brane ($q = 2$) and the Gauss-Bonnet brane ($q = 2/3$). The scalar field dynamics in these three cases exhibits several important differences. In order to understand the connections between the power index q in the generalized Friedmann equation and particular properties of corresponding scalar field dynamics it is necessary to examine the problem in the general cosmological background. The general description of the dynamics seems to be possible in a number of interesting physical situations. In what follows we shall describe asymptotic behavior of ordinary
Scalar field near a cosmological singularity and investigate the possibilities for the existence of scaling solutions for the standard as well as the tachyon field.

A. Asymptotic behavior near singularity

An interesting example of different dynamics in the standard and brane cosmologies is related to the behavior of the scalar field near a cosmological singularity. It is known that in the standard case the scalar field diverges near a singularity while it remains finite in the brane world. We shall consider the behavior of scalar field near singularity and study the asymptotic solutions in a cosmological background governed by $H^2 \sim \rho^q$. Considering this problem in the general case we start with a massless field. The equation of motion

$$\ddot{\phi} + 3H \dot{\phi} = 0, \quad (53)$$

in the background described by $H^2 \sim \rho^q$ gives $H \sim \dot{\phi}^q$ which leads to

$$\ddot{\phi} + \dot{\phi}^{1+q} = 0. \quad (54)$$

Eq. (54) easily integrates and gives

$$\phi = A(t - t_0)^{1-1/q}, \quad (55)$$
where A and t_0 are constant of integration. We observe that the standard cosmology, $q = 1$ (in this case we can not use (55) for which the asymptotic has the known form $\phi \sim \text{ln}(t/t_0)$, is an exceptional case which divides all possible asymptotic in two classes. For $q < 1$ both ϕ and $\dot{\phi}$ diverge near a cosmological singularity. The GB brane belongs to this class with the asymptotic $\phi \rightarrow 1/\sqrt{t-t_0}$. On the contrary, $q > 1$ leads to nonsingular ϕ and singular $\dot{\phi}$ (a can not be nonsingular because the power index in (55) is always less then unity). The well known example of this dynamics is provided by the Randall-Sundrum brane with $\phi \rightarrow 1/\sqrt{t-t_0}$.

It is known that in the standard case the scalar field potential $V(\phi)$ is not important during the cosmological collapse unless it is steeper than exponent (which divides all possible asymptotic in two classes. For $q < 1$ both ϕ and $\dot{\phi}$ diverge near a cosmological singularity. The GB brane belongs to this class with the asymptotic $\phi \rightarrow 1/\sqrt{t-t_0}$. On the contrary, $q > 1$ leads to nonsingular ϕ and singular $\dot{\phi}$ (a can not be nonsingular because the power index in (55) is always less then unity). The well known example of this dynamics is provided by the Randall-Sundrum brane with $\phi \rightarrow 1/\sqrt{t-t_0}$.

For steeper potentials it is impossible to neglect $V(\phi)$ which makes the asymptotic (55) invalid and the scalar field in a contracting Universe enters into a regime of oscillations, similar to described in (34). We should emphasize that (59) expresses an important condition for inflation and can be understood from a slightly different perspective. Indeed, the constancy of the slow roll parameters for $V(\phi) \sim \phi^b$

$$
e, \eta \sim \phi^{b(1-q) - 2}$$

immediately leads to (59) thereby ensuring the power law inflation. The similar situation arises for $V(\phi) \sim \phi^{-2/q}$ in case of a tachyon field.

B. Scaling solutions

In this subsection we shall investigate the cosmological dynamics of a scalar field in presence of ordinary matter. We are mainly interesting in scaling solutions, which can exist in this model. By scaling solution we mean the situation in which the scalar field energy density scales exactly as the power of the scale factor, $\rho_\phi \sim a^{-n}$, while the energy density of the perfect fluid (with equation of state $p_m = (\gamma - 1)\rho_m$), being the dominant component, scales as a (possible) different power, $\rho_m \sim a^{-m}$. If $m = 3\gamma$

We will follow the method of Refs. (35) and (37) (see also Ref. (34) on the related theme), where scaling solutions have been found in the standard and brane cosmology.

1. Standard scalar field

Supposing that the scalar field energy density behaves as $\rho_\phi \sim a^{-n}$, then using the Klein–Gordon equation

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0, \quad (61)$$

we see that the ratio of scalar field kinetic energy density and total scalar field energy density remains constant

$$\frac{\dot{\phi}^2}{\rho_\phi} = \frac{n}{6}. \quad (62)$$

In case of matter dominance we have

$$a(t) \sim t^{\frac{1}{1-\gamma}}. \quad (63)$$

Then using Eqs. (62) and (61) we get

$$\ddot{\phi} = \frac{6}{q m} \frac{1}{t} \frac{\dot{\phi}}{\phi} \frac{dV}{d\phi} \quad (64)$$

and equation (62) gives

$$\dot{\phi} \sim \phi^{\frac{1}{1-\gamma}}. \quad (65)$$

Eq. (65) readily integrates to yield

$$\phi = A t^{1 - \frac{1}{1-\gamma}}. \quad (66)$$
Substituting (66) into (64) and solving equation for $V(\phi)$ we find the potentials, which allows the scaling behavior

$$V(\phi) = \frac{2(6(\beta - 2) - qm\beta)}{(\beta - 2)^2 qm\beta} A^{2-\beta} \phi^\beta,$$ \hspace{1cm} (67)

where

$$\beta = \frac{2n}{n - qm}. \hspace{1cm} (68)$$

For a given potential $V(\phi) \sim \phi^\beta$ the scalar field energy density scales as a^n, where

$$n = \frac{q\beta}{\beta - 2} m. \hspace{1cm} (69)$$

For stability analysis of this solution we use new variables

$$\tau = \ln t, \hspace{0.5cm} u(\tau) = \frac{\phi(\tau)}{\phi_0(\tau)}, \hspace{0.5cm} p(\tau) = u'(\tau), \hspace{1cm} (70)$$

where $\phi_0(\tau)$ is the exact solution given by (66) and the prime denotes the derivative with respect to τ.

Then we have the system of two first-order differential equation

$$u' = p,$$

$$p' = \frac{2}{(\beta - 2)} \left(\frac{6}{qm} - \frac{\beta}{\beta - 2} \right) (u - u^{\beta-1})$$

$$- \left(\frac{2 + \beta}{2 - \beta} + \frac{6}{qm} \right) p, \hspace{1cm} (71)$$

and scaling solution corresponds to a critical point $(u, p) = (1, 0)$. Linearizing (71) about this point we find the eigenvalues of these coupled equations

$$\lambda_{1,2} = \frac{\beta + 2}{2(\beta - 2)} - \frac{3}{qm} \pm \sqrt{\left(\frac{\beta + 2}{2(\beta - 2)} \right)^2 \frac{2}{qm} - \frac{2\beta - 12}{qm}}. \hspace{1cm} (72)$$

The condition for stability is given by the negativity of the real parts of both eigenvalues.

Now we consider some properties of these scaling solutions in more detail. First of all, positivity of the potential (67) requires

$$\frac{1}{\beta} < \frac{6 - qm}{12}, \hspace{1cm} (73)$$

and the stability condition requires additionally

$$\frac{\beta + 2}{\beta - 2} > \frac{6}{qm}. \hspace{1cm} (74)$$

We now discuss some consequences of (73,74). First of all, we should point out that since $m = 3\gamma$ with γ been the equation of state of ordinary matter, the value for m is bounded in the interval $m \in [0, 6]$. Due to an additional degree of freedom, we have more complicated situation than one discussed in (55,57). To describe it in details, it would be convenient to discuss two cases – for positive and negative β separately.

The case of $\beta < 0$.

The stability condition (74) gives no further restrictions to the condition for existence of scaling solutions

$$\beta < \frac{6 + qm}{6 - qm} \hspace{1cm} (75)$$

They exist for

$$\beta < \frac{12}{6 - qm}. \hspace{1cm} (76)$$

From this equation one can see that for $q \leq 1$ regardless the value of m, we always have scaling solution. The standard cosmology and Gauss-Bonnet brane belong to this class. For $q > 1$ the denominator in (76) can be negative, restricting the range of β suitably for the scaling solution. A known example is the Randall-Sundrum brane ($\beta = 2$), where the scaling solutions exist for $\beta < 6/(3 - m)$ (77).

The case of $\beta > 0$.

In this case one can rewrite (73) as follows

$$\beta > \frac{12}{6 - qm}. \hspace{1cm} (77)$$

As the region $0 < \beta < 2$ is already excluded by (74) (since $qm > 0$) we can rewrite (74) as

$$\beta > \frac{6 + qm}{6 - qm}. \hspace{1cm} (78)$$

The equation (78) is more restrictive.

Thus we find that for $q \leq 1$ scaling solutions exist for $\forall m$ if β is large enough. On the other hand, if $q > 1$, then there exists no scaling solutions for the matter with $m > 6/q$, or, equivalently, $\gamma > 2/q$. On the Randall-Sundrum brane, scaling solutions with $\beta > 0$ are absent if $m > 3$ (57).

We summarize our results in the following table

<table>
<thead>
<tr>
<th>q</th>
<th>β</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q < 1$</td>
<td>$\beta < 0$ exists for all β</td>
<td>\exists</td>
</tr>
<tr>
<td>$q > 1$</td>
<td>$\beta > 0$ exists for $\forall m$, but $\beta > \frac{6 + qm}{6 - qm}$ does not exist for $m > \frac{6}{q}$</td>
<td>\exists</td>
</tr>
</tbody>
</table>

For a zone with negative β where there are no scaling solutions the stable kinetic-term-dominated solution exists. It’s explicit form for our model $H^2 \sim \rho^q$ is

$$\phi \sim \phi^{1 - \frac{q}{6m}}. \hspace{1cm} (79)$$

The eq. (69) gives also the following. Consider first the case of $\beta < 0$. For $q \leq 1$ the numerator is always less then the denominator. It means that the scalar field energy density always drops less rapidly then the matter density. For $q > 1$ it happens only if $\beta > 2/(\alpha - 1)$. On the other hand, if $\beta > 0$ and $q \geq 1$, field energy density scales faster then matter. For $q < 1$ it happens if $\beta > 2/(1 - q)$, i.e. for power-law potentials which can not support inflation.
2. Tachyon field

We would now investigate the existence of tachyon field scaling solution for matter dominance in the general cosmological background described by \(H^2 \sim \rho^q \). Assuming \(\rho_\phi \sim a^{-n} \) for tachyon field energy density, one can obtain from Eq. (18)

\[
\dot{\phi}^2 = \frac{n}{3},
\]

which integrates to yield

\[
\phi = \sqrt[3]{n} t. \tag{81}
\]

Since the matter energy density scales as the power of the scale factor \(\rho_m \sim a^{-m} \), in case of matter dominance we have

\[
a(t) \sim t^{\frac{1}{3m}} \tag{82}
\]

Substituting (81) and (82) into (17) and solving this equation for \(V(\phi) \) we find the potentials, which allow the scaling behavior for tachyon field

\[
V(\phi) \sim \phi^{-\beta}, \tag{83}
\]

where

\[
\beta = \frac{2n}{qm}. \tag{84}
\]

As for the stability of the solution, we use the same new variables as in case of usual scalar field

\[
\tau = \ln t, \quad u(\tau) = \frac{\phi(\tau)}{\phi_0(\tau)}, \quad p(\tau) = u'(\tau), \tag{85}
\]

where \(\phi_0(\tau) \) is the exact solution given by (81). Then we can get the system of two first-order differential equations as analogue of system (71). And linearizing these equations about critical point \((u, p) = (1, 0)\) corresponds to a scaling solution, we find the eigenvalues of this system

\[
\lambda_{1,2} = \frac{1}{2} \left[\beta - \frac{6}{qm} - 1 \right] \pm \sqrt{1 + 6 \left(\beta - \frac{6}{qm} \right) + \left(\beta - \frac{6}{qm} \right)^2}. \tag{86}
\]

The condition for stability is as usual given by the negativity of the real parts of both eigenvalues.

The condition of stability for tachyon scaling solution gives

\[
0 < \beta < \frac{6}{qm}, \tag{87}
\]

which readily leads to \(n < 3 \) or equivalently \(\gamma < 1 \) if the tachyon field mimics the background (solutions with this property are often called scaling solutions or trackers). It should be noted that the condition for existence of stable scaling solution for tachyon is independent of \(q \). Our result is in agreement with Ref. [38] which investigates the scaling solutions in case of standard GR \((q = 1)\). In general, our findings for tachyon field are consistent with the results of Ref. [39] which provides a unified framework to investigate the scaling solutions for a variety of dynamical systems.

V. CONCLUSIONS

In this paper we have examined different aspects of scalar field dynamics in Gauss-Bonnet brane worlds. We have presented detailed investigation of tachyon inflation in GB background. Our analysis is quite general and deals with tachyon field dynamics at all energy scales from GR to GB regimes for polynomial type of potentials. The information of GB correction is encoded in the functions \(\mathcal{D}, \theta \) and the slow roll parameters. We find that the spectral index reaches a maximum value in the intermediate region between RS and GB regimes which improves for lower values of the exponent in case of positive \(p \). Our analytical results and numerical treatment of the full GB dynamics show that tachyonic inflation with inverse square potential leads to scale invariant spectrum in the high energy GB limit which is in agreement with the asymptotic analysis of Ref. [30]. The combined effect of GB term on the tensor to scalar ratio, encoded in \(\mathcal{D}(\chi), \theta(\chi) \) and the slow roll parameters, is such that \(R \) peaks around the RS regime and exhibits a minimum in the intermediate region. While evolving the energy scales from RS to high energy GB patch, the background dynamics gradually changes from \(H^2 \sim \rho^2 \) to \(H^2 \sim \rho^2/3 \) mimicking the GR like features \((H^2 \sim \rho)\) in the intermediate region. This is an important property of GB correction which manifests in both tachyonic and standard scalar field dynamics. We have shown that the tensor to scalar ratio is generally very low in case of GB tachyonic inflation at all energy scales for polynomial type of potentials with generic positive values of \(p \). We find similar features in case inflation is driven by inverse power law potentials with large negative powers. When \(p \) is close to the scale invariant limit, the tensor to scalar ratio becomes large in the high energy GB regime whereas it is suppressed in the intermediate region making these models consistent with observation.

In section IV, we have examined the generalized dynamics with Friedmann equation \(H^2 \sim \rho^q \) for an arbitrary \(q \). This allowed us to explain some known differences between the standard cosmology \((q = 1)\) and a Randall-Sundrum brane \((q = 2)\) in the framework of a unified picture as well as to obtain new results in the case of Gauss-Bonnet brane \((q = 2/3)\). In the generalized background cosmology, we have investigated the asymptotic behavior of scalar field near cosmological singularity and studied scaling solutions in the regime when a perfect fluid energy density dominates. In the case of ordinary scalar field, we
have demonstrated that the underlying field dynamics exhibits distinct features depending whether \(q < 1 \) or \(q > 1 \) which, in particular, distinguishes the Gauss-Bonnet and Randall-Sundrum brane worlds. For tachyon system, we have shown that the existence of stable scaling solutions \(\forall q \) is guaranteed if the adiabatic index of barotropic fluid \(\gamma < 1 \).

VI. ACKNOWLEDGMENTS

We thank Gianluca Calcagni and Shinji Tsujikawa for their critical comments and for pointing out the reason for the mismatch we had with their recent work in the asymptotic regime. MS acknowledges the useful discussion with N. Dadhich, T. Padmanabhan and V. Sahni. The work of AT was supported by RFBR grant 02-02-16817 and scientific school grant 2383.2003.2 of the Russian Ministry of Science and Technology.

The GB brane world contains different energy scales discussed in [10] which we summarize here for the sake of completeness. The GB term may be thought of as the lowest-order stringy correction to the 5D Einstein-Hilbert action, with coupling constant \(\alpha > 0 \). In this case, \(\alpha |R^2| \ll |R| \), so that

\[
\alpha \ll \ell^2, \quad (A1)
\]

where \(\ell \) is the bulk curvature scale, \(|R| \sim \ell^{-2} \). The RS type models are recovered for \(\alpha = 0 \). The 5D field equations following from the bulk action are

\[
\mathcal{G}_{ab} = -\Lambda_5 (5)_{gb} + \frac{\alpha}{2} \mathcal{H}_{ab}, \quad (A2)
\]

\[
\mathcal{H}_{ab} = \left[R^2 - 4 R_{cd} R^{cd} + R_{cd} F_{cd} R^f_{\, f} \right] (5)_{gab} - 4 [R_{ab} \ell^2 - 2 R_{ac} R_b + 2 R_{abc} R^{cd} + R_{ac} R_{bd}] . \quad (A3)
\]

An AdS\(_5\) bulk satisfies the 5D field equations, with

\[
\bar{R}_{abcd} = \frac{1}{\ell^2} \left[(5)_{gac} (5)_{gbd} - (5)_{gad} (5)_{gbc} \right], \quad (A4)
\]

\[
\bar{G}_{ab} = \frac{6}{\ell^2} (5)_{gab} = -\Lambda_5 (5)_{gab} + \frac{\alpha}{2} \bar{H}_{ab}, \quad (A5)
\]

\[
\bar{H}_{ab} = \frac{24}{\ell^4} (5)_{gab}. \quad (A6)
\]

It follows that

\[
\Lambda_5 = -\frac{6}{\ell^2} + \frac{12 \alpha}{\ell^4}, \quad (A7)
\]

\[
\frac{1}{\ell^2} \equiv \mu^2 = \frac{1}{4\alpha} \left[1 - \sqrt{1 + \frac{4}{3} \alpha \Lambda_5} \right], \quad (A8)
\]

where we choose in Eq. (A8) the branch with an RS limit, and \(\mu \) is the energy scale associated with \(\ell \). This reduces to the RS relation \(1/\ell^2 = -\Lambda_5/6 \) when \(\alpha = 0 \). Note that there is an upper limit to the GB coupling from Eq. (A8):

\[
\alpha < \frac{\ell^2}{4}, \quad (A9)
\]

which in particular ensures that \(\Lambda_5 < 0 \).

A Friedmann-Robertson-Walker (FRW) brane in an AdS\(_5\) bulk is a solution to the field and junction equations. The modified Friedmann equation on the (spatially flat) brane is

\[
\kappa_5^2 (\rho + \lambda) = 2 \sqrt{H^2 + \mu^2} \left[3 - 4 \alpha \mu^2 + 8 \alpha H^2 \right]. \quad (A10)
\]

This may be rewritten as

\[
H^2 = \frac{1}{4 \alpha} \left[(1 - 4 \mu^2) \cosh \left(\frac{2 \chi}{3} \right) - 1 \right] \quad (A11)
\]

\[
\kappa_5^2 (\rho + \lambda) = \left[\frac{2(1 - 4 \mu^2)\chi}{\alpha} \right]^{1/2} \sinh \chi, \quad (A12)
\]

where \(\chi \) is a dimensionless measure of the energy density. Note that the limit in Eq. (A9) is necessary for \(H^2 \) to be non-negative.

When \(\rho = 0 = H \) in Eq. (A10) we recover the expression for the critical brane tension which achieves zero cosmological constant on the brane,

\[
\kappa_5^2 \lambda = 2 \mu (3 - 4 \alpha \mu^2). \quad (A13)
\]

The effective 4D Newton constant is given by

\[
\kappa_4^2 = \frac{\mu}{(1 + 4 \alpha \mu^2) \kappa_5^2}. \quad (A14)
\]

When Eq. (A11) holds, this implies \(M_5^3 \approx M_4^2/\ell \). The modified Friedmann equation (A11), together with Eq. (A12), shows that there is a characteristic GB energy scale,

\[
M_{GB} = \left[\frac{2(1 - 4 \mu^2)^{3/2}}{\alpha \kappa_5^4} \right]^{1/8}, \quad (A15)
\]

such that the GB high energy regime \((\chi \gg 1) \) is \(\rho + \lambda \gg M_4^2 \). If we consider the GB term in the action as a correction to RS gravity, then \(M_{GB} \) is greater than the RS energy scale \(M_\Lambda = \lambda^{1/4} \), which marks the transition to RS high-energy corrections to 4D general relativity. By Eq. (A15), this requires \(3 \beta^3 - 12 \beta^2 + 15 \beta - 2 < 0 \) where \(\beta \equiv 4 \alpha \mu^2 \). Thus (to 2 significant figures),

\[
M_\Lambda < M_{GB} \Rightarrow \alpha \mu^2 < 0.038, \quad (A16)
\]

which is consistent with Eq. (A11).

Expanding Eq. (A11) in \(\chi \), we find three regimes for the dynamical history of the brane universe: the GB regime,

\[
\rho \gg M_4^2 \Rightarrow H^2 \approx \left[\frac{\kappa_5^4}{16 \alpha \rho} \right]^{2/3}, \quad (A17)
\]
the RS regime,
\[M_{GB}^4 \gg \rho \gg \lambda \equiv M_\lambda^4 \Rightarrow H^2 \approx \frac{k_s^2}{6\lambda} \rho^2, \quad (A18) \]
the 4D regime,
\[\rho \ll \lambda \Rightarrow H^2 \approx \frac{k_s^2}{3} \rho . \quad (A19) \]

The GB regime, when the GB term dominates gravity at the highest energies, above the brane tension, can use-
fully be characterized as
\[H^2 \gg \alpha^{-1} \gg \mu^2 , \quad H^2 \propto \rho^{2/3}. \quad (A20) \]

The brane energy density should be limited by the quantum gravity limit, \(\rho < M_5^4 \), in the high-energy regime. By Eq. \((A17) \),
\[\rho < M_5^4 \Rightarrow H < \left(\frac{\pi M_5}{2\alpha} \right)^{1/3} . \quad (A21) \]
In addition, since \(\rho \gg M_{GB}^4 \), we have
\[M_5 \gg M_{GB} \Rightarrow \alpha \gg \frac{2}{(8\pi M_5)^2} . \quad (A22) \]
Combining these two equations leads to
\[M_{GB}^4 \ll \rho < M_5^4 \Rightarrow H < 4\pi^{3/2} M_5 . \quad (A23) \]

Comparing Eqs. \((A22) \) and \((A10) \), we also find that
\[\ell \gg \frac{1}{8\pi M_5} , \quad (A24) \]

The mass scales \(M_5 \) and \(M_4 \) are related
\[M_5^3 \approx \sqrt{\frac{4\pi}{3} \lambda^{1/2} M_4} \quad (A25) \]

Since the brane energy density is limited by quantum gravity limit, the dimensionless energy scale \(\chi \) can not exceed certain maximum value \(\chi_{max} \). Using COBE normalized value of density perturbations we found \(\chi_{max} \approx 6 \). For the brane tension \(\lambda \), it is typically of the order of \(10^{-5} M_4^4 \).

Equations \((A6) \) and \((A12) \) allow to relate the scales \(M_5 \) and \(M_{GB} \)
\[M_5 \approx M_{GB} \sinh(\chi_{max}) \quad (A26) \]

The typical estimates for various scales are
\[M_\lambda \approx 10^{-5} M_4, \quad M_5 \approx 10^{-3} M_4, \quad M_{GB} \approx 10^{-4} M_4 \quad (A27) \]

These estimates are consistent with the bounds on various scales in the problem quoted above. We once again emphasize that we treat here GB term perturbatively such that the smooth limit to RS brane world exists.

[33] S. Foster, gr-qc/9806098.

[34] S. Foster, gr-qc/9806113.

[40] The GB term can as well be motivated purely on classical considerations. It arises naturally as higher order iteration of the self interaction of gravitational field which retains the quasi-linear second order character of the field equation. The physical realization of this iteration naturally requires a 5-dimensional space time [12].

[41] We thank A Starobinsky for his comment on the problem of caustics formation.